Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 94-99
  材料综述 |
王振林1,2,3, 成来飞3
1 重庆理工大学材料科学与工程学院, 重庆400054;
2 重庆市特种焊接材料与技术高校工程研究中心, 重庆 400054;
3 西北工业大学超高温结构复合材料重点实验室, 西安 710072
Irradiation Effects and Irradiation Resistance Modification of Glasses
WANG Zhenlin1,2,3, CHENG Laifei3
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054;
2 Chongqing Municipal Engineering Research Center of Institutions of Higher Education for Special Welding Materials and Technology, Chongqing 400054;
3 National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航天科技、核医学、核能工业和绿色建筑的发展对使用在辐射环境中的玻璃提出了越来越高的要求。玻璃在辐射环境中会发生微观结构变化和宏观性质改变,耐辐照玻璃是一种在高能射线或粒子辐照后可见光区透过率下降较小,能保持物理化学性能稳定的特种玻璃。阐述了玻璃的辐照效应研究现状,介绍了玻璃耐辐照改性的研究进展及挑战,并提出了值得关注的新趋势。
E-mail Alert
关键词:  玻璃  辐照效应  耐辐照  掺杂改性  航天科技  核能工业    
Abstract: With the development of aerospace science and technology, nuclear medicine, nuclear power industry and green architecture, more rigorous requirements on glasses used in radioactive environment have been put forward. Irradiation may cause va-riations in glass microstructure and in glass macroscopic properties, and irradiation resistant glass should specifically possess stabilized physicochemical performances with little drop in visible light transmittance. This paper introduces the current research status on glass irradiation effects. Furthermore, progress and challenges of irradiation-resistant modification on glasses are reviewed with some notable new trends proposed.
Key words:  glass    irradiation effect    irradiation resistance    doping modification    aerospace science    nuclear industry
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TQ171.73  
基金资助: 国家973基础研究项目(2011CB605806);国家自然科学基金(50820145202)
作者简介:  王振林:男, 1968年生,博士, 副教授,主要从事无机非金属材料的研究
王振林, 成来飞. 玻璃的辐照效应及耐辐照改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 94-99.
WANG Zhenlin, CHENG Laifei. Irradiation Effects and Irradiation Resistance Modification of Glasses. Materials Reports, 2017, 31(5): 94-99.
链接本文:  或
1 Sharma G, Bagga R, Cemmi A, et al. Spectroscopic investigations on γ-irradiated Eu3+ and Dy3+ doped oxyfluoride glasses [J]. Radiat Phys Chem,2015,108:48.
2 Weber W J, Ewing R C, Angell C A, et al. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition [J]. J Mater Res,1997,12(8):1946.
3 Levy P W. The kinetics of gamma-ray induced coloring of glass [J]. J Am Ceram Soc,1960,43(8):389.
4 El-Alaily N A, Mohamed R M. Effect of irradiation on some optical properties and density of lithium borate glass [J]. Mater Sci Eng B,2003,98:193.
5 Watanabe M, Yoshida T, Tanabe T, et al. Observation of defect formation process in silica glasses under ion irradiation [J]. Nucl Instrum Methods Phys Res B,2006,250:174.
6 Yang T F, Gao Y, Huang X J, et al. The transformation balance between two types of structural defects in silica glass in ion-irradiation processes [J]. J Non-Cryst Solids,2011,357:3245.
7 Mejri A, Farah K, Eleuch H, et al. Application of commercial glass in gamma radiation processing [J]. Radiat Meas,2008,43:1372.
8 ElBatal F H, Selim M S, Marzouk S Y, et al. UV-vis absorption of the transition metal-doped SiO2-B2O3-Na2O glasses [J]. Phys B,2007,398:126.
9 ElBatal F H, ElKheshen A A, Azooz M A, et al. Gamma ray inte-raction with lithium diborate glasses containing transition metals ions [J]. Opt Mater,2008,30:881.
10 Bonfils J, Peuget S, Panczer G, et al. Effect of chemical composition on borosilicate glass behavior under irradiation [J]. J Non-Cryst So-lids,2010,356:388.
11 Sharma G, Singh K, Manupriya, et al. Effects of gamma irradiation on optical and structural properties of PbO-Bi2O3-B2O3 glasses [J]. Radiat Phys Chem,2006,75:959.
12 Sharma G, Thind K S, Manupriya, et al. Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses [J]. Nucl Instrum Methods Phys Res B,2006,243:345.
13 Delaye J M, Peuget S, Bureau G, et al. Molecular dynamics simulation of radiation damage in glasses [J]. J Non-Cryst Solids,2011,357:2763.
14 Ou Y W, Baccaro S, Zhang Y P, et al. Effect of gamma-ray irradiation on the optical properties of PbO-B2O3-SiO2 and Bi2O3-B2O3-SiO2 glasses [J]. J Am Ceram Soc,2010,93(2):338.
15 Gao X, Yang S S, Wang Y F, et al. γ-Radiation effect on transmission of optical glass for application in space optics[J].Atom Energy Sci Technol,2010,44(2):228(in Chinese).
高欣,杨生胜,王云飞,等. γ辐照对空间用光学玻璃透射率的影响[J].原子能科学技术,2010,44(2):228.
16 Wei Q, He S Y, Liu H, et al. Damage kinetics of quartz glass under proton radiation with low energy [J]. Acta Opt Sin,2005,25(1):83(in Chinese).
魏强,何世禹,刘海,等. 石英玻璃低能质子辐照损伤动力学研究[J].光学学报,2005,25(1):83.
17 Kadono K, Itakura N, Akai T, et al. Effect of additive ions on the optical density and stability of the color centers induced by X-ray irradiation in soda-lime silicate glass [J]. Nucl Instrum Methods Phys Res B,2009,267:2411.
18 Peuget S, Cachia J N, Jegou C, et al. Irradiation stability of R7T7-type borosilicate glass [J]. J Nucl Mater,2006,354:1.
19 Hirsch S, Klein H, Jung P. Dimensional changes of silica-, borosilicate and germania-glasses and quartz under irradiation [J]. J Non-Cryst Solids,2005,351:3279.
20 El Batal F H, Ashour A H. Effect of gamma irradiation on the electrical conductivity of ternary borate glasses [J]. Mater Chem Phys,2002,77:677.
21 Weber W J, Roberts E P. A review of radiation effects in solid nuclear waste forms [J]. Nucl Technol,1983,60(2):178.
22 Boizot B, Agnello S, Reynard B, et al. Raman spectroscopy study of β-irradiated silica glass [J]. J Non-Cryst Solids,2003,325:22.
23 Ollier N, Rizza G, Boizot B, et al. Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation [J]. J Appl Phys,2006,99:073511.
24 Singh S, Sandhu A K, Prasher S, et al. Effect of neutron irradiation on etching, optical and structural properties of microscopic glass slide used as a solid state nuclear track detector [J]. Radiat Meas,2007,42:1328.
25 浙江大学等编. 玻璃工艺原理[M]. 北京: 中国建筑工业出版社,1981:173.
26 Donald I W, Metcalfe B L, Taylor R N J. The immobilization of high level radioactive wastes using ceramics and glasses [J]. J Mater Sci,1997,32:5851.
27 Hubert M, Faber A J. On the structural role of boron in borosilicate glasses [J]. Phys Chem Glasses: Eur J Glass Sci Technol B,2014,55(3):136.
28 Plodinec M J. Borosilicate glasses for nuclear waste imobilisation [J]. Glass Technol,2000,41(6):186.
29 Arbuzov V I, Andreeva N Z, Leko N A, et al. Optical, spectral, and radiation-shielding properties of high-lead phosphate glasses [J]. Glass Phys Chem,2005,31(5):583.
30 Kim C W, Day D E. Immobilization of Hanford LAW in iron phosphate glasses [J]. J Non-Cryst Solids,2003,331:20.
31 Mesko M G, Day D E. Immobilization of spent nuclear fuel in iron phosphate glass [J]. J Nucl Mater,1999,273:27.
32 Rygel J L, Pantano C G. Synthesis and properties of cerium aluminosilicophosphate glasses [J]. J Non-Cryst Solids,2009,355:2622.
33 Chah K, Boizot B, Reynard B, et al. Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glass [J]. Nucl Instrum Methods Phys Res B,2002,191:337.
34 Chopra N, Singh N P, Baccaro S, et al. UV-vis spectroscopic investigation on γ-irradiated alkali aluminoborate glasses [J]. Phys B,2012,407:1209.
35 Rupesh Kumar A, Rao T G V M, Neeraja K, et al. Gamma ray induced changes on vibrational spectroscopic properties of strontium alumino-borosilicate glasses [J]. Vib Spectrosc,2013,69: 49.
36 Cetinkaya Colak S, Akyuz I, Atay F. On the dual role of ZnO in zinc-borate glasses [J]. J Non-Cryst Solids,2016,432:406.
37 Qian G J, Baccaro S, Guerra A, et al. Gamma irradiation effects on ZnO-based scintillating glasses containing CeO2 and/or TiO2 [J]. Nucl Instrum Methods Phys Res B,2007,262:276.
38 Marzouk M A, ElBatal F H, Eisa W H, et al. Comparative spectral and shielding studies of binary borate glasses with the heavy metal oxides SrO, CdO, BaO, PbO or Bi2O3 before and after gamma irradiation [J]. J Non-Cryst Solids,2014,387:155.
39 Singh K J, Singh N, Kaundal R S, et al. Gamma-ray shielding and structural properties of PbO-SiO2 glasses [J]. Nucl Instrum Met-hods Phys Res B,2008,266:944.
40 Kaur R, Singh S, Pandey O P. UV-vis spectroscopic studies of gamma irradiated lead sodium borosilicate glasses [J]. J Mol Struct,2014,1060:251.
41 Kaur R, Singh S, Pandey O P. FTIR structural investigation of gamma irradiated BaO-Na2O-B2O3-SiO2 glasses [J]. Physica B,2012,407:4765.
42 Kaewjaeng S, Kaewkhao J, Limsuwan P,et al.Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system [J].Procedia Eng,2012,32:1080.
43 Tuscharoen S, Kaewkhao J, Limkitjaroenporn P, et al. Improvement of BaO∶B2O3∶ fly ash glasses: Radiation shielding, physical and optical properties [J]. Ann Nucl Energy,2012,49:109.
44 Laopaiboon R, Bootjomchai C, Chanphet M, et al. Elastic properties investigation of gamma-radiated barium lead borosilicate glass using ultra sonic technique [J]. Ann Nucl Energy,2011,38:2333.
45 Yasaka P, Pattanaboonmee N, Kim H J, et al, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses [J]. Ann Nucl Energy,2014,68:4.
46 Friebele E J, Gingerich M E, Sigel G H. Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides [J]. Appl Phys Lett,1978,32(10):619.
47 Acocella J, Takata M, Tomozawa M, et al, Effect of γ radiation on high-water-content glasses [J]. J Am Ceram Soc,1982,65(9):407.
48 Fu X J, Song L X, Li J C. Radiation induced color centers in silica glasses of different OH content [J]. Nucl Instrum Methods Phys Res B,2014,330:7.
49 Faile S P, Roy D M. Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses [J]. Mater Res Bull,1970,5(6):385.
50 Skuja L, Hirano M, Hosono H, et al. Defects in oxide glasses [J]. Phys Stat Solidi C,2005,2(1):15.
51 Youngman R E, Sen S. The nature of fluorine in amorphous silica [J]. J Non-Cryst Solids,2004,337:182.
52 ElBatal F H, Marzouk M A, Abdel ghany A M. Gamma rays inte-raction with bismuth borate glasses doped by transition metal ions [J]. J Mater Sci,2011,46:5140.
53 PalSingh G, Kaur P, Kaur S, et al. Gamma ray effect on the covalent behavior of the CeO2-BaO-B2O3 glasses [J]. Physica B,2014,450:106.
54 Baccaro S, Cemmi A, Sarcina I D, et al. Gamma rays effects on the optical properties of cerium-doped glasses [J]. Int J Appl Glass Sci,2015,6(3):295.
55 Sheng Y B, Yang L Y, Luan H X, et al. Improvement of radiation resistance by introducing CeO2 in Yb-doped silicate glasses [J]. J Nucl Mater,2012,427:58.
56 Ghoneim N A, Abdelghany A M, Abo-Naf S M, et al. Spectrosco-pic studies of lithium phosphate, lead phosphate and zinc phosphate glasses containing TiO2: Effect of gamma irradiation [J]. J Mol Struct,2013,1035:209.
57 Crum J V, Turo L, Riley B, et al. Multi-phase glass-ceramics as a waste form for combined fission products: Alkalis, alkaline earths, lanthanides, and transition metals [J]. J Am Ceram Soc,2012,95(4):1297.
58 Tang M, Kossoy A, Jarvinen G, et al. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms [J]. Nucl Instrum Methods Phys Res B,2014,326:293.
59 Fowler J D,Hurley G F,Kennedy J C,et al.14 MeV neutron irradiation effects in macor glass-ceramic [J]. J Nucl Mater,1981,103:755.
60 Ferraris M, Casalegno V, et al.Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications [J]. J Nucl Mater,2012,429:166.
[1] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[2] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[5] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[6] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[7] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[8] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[9] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[10] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[11] 田清波,李春珍,李海文,王玥,吕志杰. 云母微晶玻璃复合材料的研究进展[J]. 材料导报, 2019, 33(13): 2191-2196.
[12] 郝贠洪, 雅茹罕, 李慧, 赵呈光. 田口方法下钢化玻璃的冲蚀性能及损伤形貌[J]. CLDB, 2018, 32(8): 1380-1384.
[13] 叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
[14] 李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
[15] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Full text