Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030191-7    https://doi.org/10.11896/cldb.22030191
  无机非金属及其复合材料 |
可见光宽波带减反超疏玻璃的制备工艺及结构探讨
周子吉1, 孙慧慧1, 王群1, 曹文1, 周忠华1,2,*, 黄悦1,*
1 厦门大学材料学院, 福建 厦门 361005
2 福建省先进材料重点实验室, 福建 厦门 361005
Study on Engineering and Structure of a Wideband Visible Light Low Reflection and Superhydrophobic Glass
ZHOU Ziji1, SUN Huihui1, WANG Qun1, CAO Wen1, ZHOU Zhonghua1,2,*, HUANG Yue1,*
1 College of Materials, Xiamen University, Xiamen 361005, Fujian, China
2 Fujian Key Laboratory of Advanced Materials, Xiamen 361005, Fujian, China
下载:  全 文 ( PDF ) ( 19609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高透射率和自洁净复合功能化是光伏玻璃研究热点。利用光伏玻璃原片,以乙二胺四乙酸二钠(EDTA-2Na)和乙二胺四乙酸四钠(EDTA-4Na)混合溶液为刻蚀液,通过水热刻蚀,再经十二烷基三乙氧基硅烷(DTES)疏水修饰,成功得到具有可见光宽波带(380~780 nm)减反超疏玻璃。探究了水热温度、反应时间、络合物混合比例、络合物添加量对膜层结构和光学性能的影响,以及疏水剂涂覆工艺和预处理时间对表面润湿性的影响。在160 ℃、8 h,刻蚀液中络合物为EDTA-2Na(40%,体积分数)与EDTA-4Na(60%,体积分数)、EDTA-nNa (0.34 mol/L)总添加量为4%(体积分数)时,所得玻璃的可见光380 ~ 780 nm各个波长的反射率小于1%;总反射率为0.45%,总透射率为98.85%,雾度为0%。采用旋涂法涂DTES进行表面疏水修饰,预水解时间为18 h时,可获得超疏水性能,水接触角为150.86°,滚动角为5.9°。表面疏水修饰对减反射性能影响很小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周子吉
孙慧慧
王群
曹文
周忠华
黄悦
关键词:  减反射  超疏水  水热刻蚀  乙二胺四乙酸钠盐(EDTA-nNa)  十二烷基三乙氧基硅烷(DTES)  光伏玻璃    
Abstract: Multiple functionality including high transmittance and self-cleaning is one of the hotspots in current study of photovoltaic glass. Using photovoltaic glass as substrate and EDTA-2Na and EDTA-4Na mixing aqueous solution as etching solution, low reflective in a wideband visible light (380—780 nm) and superhydrophobic glass has been successfully prepared by hydrothermal etching and dodecyltriethoxysilane (DTES) hydrophobic modification. The effects of hydrothermal temperature, reaction time, mixing ratio and amount of complex on the etched glass's structure and optical properties, as well as coating process of hydrophobic agent and pretreatment time on the surface wettability were investigated. When the reaction conditions are 160 ℃ 8 h and the etching agent with EDTA-2Na∶EDTA-4Na = 40%∶60%, total EDTA-nNa(0.34 mol/L) added amount = 4vol%, the reflectance is <1% among 380—780 nm band of visible light, and the total reflectance, total transmittance, haze are 0.45%, 98.85%, 0%, respectively. After modified by DTES spin coating and when the prehydrolysis time is 18 h, the glass surface shows superhydrophobic property with a water contact angle 150.86° and a sliding angle 5.9°. The surface hydrophobic modification has little influence on the antireflection performance.
Key words:  antireflection    superhydrophobicity    hydrothermal etching    ethylenediaminetetraacetic acid sodium salt (EDTA-nNa)    dodecyltriethoxysilane (DTES)    photovoltaic glass
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB321  
基金资助: 福建省科技重大专项(2014HZ0005);厦门大学科技计划(XDHT2017415A)
通讯作者:  *周忠华,厦门大学材料学院教授。1998年毕业于日本三重大学,无机材料科学专业博士。1998—2007年任日本东芝陶瓷株式会社开发研究所主任研究员。2007年至今任厦门大学材料学院教授,主要从事玻璃表面功能化、环境净化材料及其应用、纳米材料合成及其应用的研究。zzh@xmu.edu.cn
黄悦,厦门大学材料学院高级工程师。1990年学士毕业于武汉理工大学,材料科学专业。2002年硕士毕业于日本三重大学。2011年至今任厦门大学材料学院高级工程师。主要从事陶瓷材料、玻璃表面功能化、环境净化材料及其应用的研究。y.huang@xmu.edu.cn   
作者简介:  周子吉,2019年6月于济南大学获得工学学士学位。现为厦门大学材料学院硕士研究生。目前主要研究领域为减反射玻璃。
引用本文:    
周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
ZHOU Ziji, SUN Huihui, WANG Qun, CAO Wen, ZHOU Zhonghua, HUANG Yue. Study on Engineering and Structure of a Wideband Visible Light Low Reflection and Superhydrophobic Glass. Materials Reports, 2023, 37(18): 22030191-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030191  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030191
1 Starowicz Z, Drabczyk K, Gawlińska K, et al. Metrology and Measurement Systems, 2018, 25(1), 203.
2 Kazufumi O, Mamoru S, Yusuke T, et al. Japanese Journal of Applied Physics, 1993, 32(4), L614.
3 Zhao S J, Zhao J, Wen M, et al. Langmuir,2018, 34(38), 11316.
4 Sun X Y, Li L, Xu X Z, et al. Optik - International Journal for Light and Electron Optics, 2020, 212, 164704.
5 Im M, Im H, Lee J H, et al. Soft Matter, 2010, 6(7), 1401.
6 Artus G, Jung S, Zimmermann J, et al. Advanced Materials, 2006, 20: 2758.
7 Kato S, Sato A. Journal of Materials Chemistry, 2012, 22(17), 8613.
8 Lei J, Zhao Y,Zhai J. Angewandte Chemie International Edition in English, 2004, 43(33), 4338.
9 Cao L L, Gao D. Faraday Discussions, 2010, 146, 57.
10 Mehmood U, Al-Sulaiman F A, Yilbas B S, et al. Solar Energy Materials and Solar Cells, 2016, 157, 604.
11 Xiong J J, Das S N, Kar J P, et al. Journal of Materials Chemistry, 2010, 20(45), 10246.
12 Li T, He J H. Chinese Science Bulletin, 2014, 59(8), 715 (in Chinese).
李彤, 贺军辉. 科学通报, 2014, 59(8), 715.
13 Hui S M, Hua Y Q, Li Z B. Acta Optica Sinica, 2019, 39(4), 6 (in Chinese).
惠爽谋, 花银群, 李志宝. 光学学报, 2019, 39(4), 6.
14 Wang C Y, Tao Y. Glass surface treatment technology, Chemical Industry Press, China, 2004, pp. 146 (in Chinese).
王承遇, 陶瑛. 玻璃表面处理技术. 化学工业出版社, 2004, pp. 146.
15 Bautista M C, Morales A. Solar Energy Materials and Solar Cells, 2003, 80(2), 217.
16 Yang Z Y, Zhu D Q, Lu D S, et al. Optical & Quantum Electronics, 2006, 35(12), 2075.
17 Zheng Y Y, Zhou Z H, Cao W, et al. Ceramics International, 2020, 46(11), 18623.
18 Cao W, Zhou Z H, Sun H H, et al. Ceramics International, DOI:10.1016/j.ceramint.2021.12.001.
19 Lafuma A, Quéré D. Nature Materials, 2003, 2(7), 457.
20 Wenzel R N. Transactions of the Faraday Society, 1936, 28(8), 988.
21 Cassie A B D. Transactions of the Faraday Society, 1944, 40(1), 546.
22 Arkles B. Chemistry Technology, 1977, 7(12), 766.
23 Liu J, Yao G Y. China Powder Science and Technology, 2014, 20(4), 60 (in Chinese).
刘佳, 姚光晔. 中国粉体技术, 2014, 20(4), 60.
24 Ke Y K, Dong H R. Handbook of analytical chemistry-3B, 3nd Ed. Chemical Industry Press, China, 2015, pp. 530 (in Chinese).
柯以侃, 董慧茹. 分析化学手册-第三分册, 3版, 化学工业出版社, 2015, pp. 530.
25 Liu C, Ding D Y, Li Y C, et al. Materials Reports, 2022(16), 1 (in Chinese).
刘晨, 丁德一, 李逸辰, 等. 材料导报, 2022(16), 1.
26 Xu J J, Kang J J, Y W, et al. Materials Reports, 2022, 36(7), 97 (in Chinese).
许骏杰, 康嘉杰, 岳文, 等. 材料导报, 2022, 36(7), 97.
[1] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[2] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[3] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[4] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[5] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[6] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[7] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[8] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[9] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[10] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[11] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[12] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[13] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[14] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[15] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed