Abstract: Multiple functionality including high transmittance and self-cleaning is one of the hotspots in current study of photovoltaic glass. Using photovoltaic glass as substrate and EDTA-2Na and EDTA-4Na mixing aqueous solution as etching solution, low reflective in a wideband visible light (380—780 nm) and superhydrophobic glass has been successfully prepared by hydrothermal etching and dodecyltriethoxysilane (DTES) hydrophobic modification. The effects of hydrothermal temperature, reaction time, mixing ratio and amount of complex on the etched glass's structure and optical properties, as well as coating process of hydrophobic agent and pretreatment time on the surface wettability were investigated. When the reaction conditions are 160 ℃ 8 h and the etching agent with EDTA-2Na∶EDTA-4Na = 40%∶60%, total EDTA-nNa(0.34 mol/L) added amount = 4vol%, the reflectance is <1% among 380—780 nm band of visible light, and the total reflectance, total transmittance, haze are 0.45%, 98.85%, 0%, respectively. After modified by DTES spin coating and when the prehydrolysis time is 18 h, the glass surface shows superhydrophobic property with a water contact angle 150.86° and a sliding angle 5.9°. The surface hydrophobic modification has little influence on the antireflection performance.
周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
ZHOU Ziji, SUN Huihui, WANG Qun, CAO Wen, ZHOU Zhonghua, HUANG Yue. Study on Engineering and Structure of a Wideband Visible Light Low Reflection and Superhydrophobic Glass. Materials Reports, 2023, 37(18): 22030191-7.
1 Starowicz Z, Drabczyk K, Gawlińska K, et al. Metrology and Measurement Systems, 2018, 25(1), 203. 2 Kazufumi O, Mamoru S, Yusuke T, et al. Japanese Journal of Applied Physics, 1993, 32(4), L614. 3 Zhao S J, Zhao J, Wen M, et al. Langmuir,2018, 34(38), 11316. 4 Sun X Y, Li L, Xu X Z, et al. Optik - International Journal for Light and Electron Optics, 2020, 212, 164704. 5 Im M, Im H, Lee J H, et al. Soft Matter, 2010, 6(7), 1401. 6 Artus G, Jung S, Zimmermann J, et al. Advanced Materials, 2006, 20: 2758. 7 Kato S, Sato A. Journal of Materials Chemistry, 2012, 22(17), 8613. 8 Lei J, Zhao Y,Zhai J. Angewandte Chemie International Edition in English, 2004, 43(33), 4338. 9 Cao L L, Gao D. Faraday Discussions, 2010, 146, 57. 10 Mehmood U, Al-Sulaiman F A, Yilbas B S, et al. Solar Energy Materials and Solar Cells, 2016, 157, 604. 11 Xiong J J, Das S N, Kar J P, et al. Journal of Materials Chemistry, 2010, 20(45), 10246. 12 Li T, He J H. Chinese Science Bulletin, 2014, 59(8), 715 (in Chinese). 李彤, 贺军辉. 科学通报, 2014, 59(8), 715. 13 Hui S M, Hua Y Q, Li Z B. Acta Optica Sinica, 2019, 39(4), 6 (in Chinese). 惠爽谋, 花银群, 李志宝. 光学学报, 2019, 39(4), 6. 14 Wang C Y, Tao Y. Glass surface treatment technology, Chemical Industry Press, China, 2004, pp. 146 (in Chinese). 王承遇, 陶瑛. 玻璃表面处理技术. 化学工业出版社, 2004, pp. 146. 15 Bautista M C, Morales A. Solar Energy Materials and Solar Cells, 2003, 80(2), 217. 16 Yang Z Y, Zhu D Q, Lu D S, et al. Optical & Quantum Electronics, 2006, 35(12), 2075. 17 Zheng Y Y, Zhou Z H, Cao W, et al. Ceramics International, 2020, 46(11), 18623. 18 Cao W, Zhou Z H, Sun H H, et al. Ceramics International, DOI:10.1016/j.ceramint.2021.12.001. 19 Lafuma A, Quéré D. Nature Materials, 2003, 2(7), 457. 20 Wenzel R N. Transactions of the Faraday Society, 1936, 28(8), 988. 21 Cassie A B D. Transactions of the Faraday Society, 1944, 40(1), 546. 22 Arkles B. Chemistry Technology, 1977, 7(12), 766. 23 Liu J, Yao G Y. China PowderScience and Technology, 2014, 20(4), 60 (in Chinese). 刘佳, 姚光晔. 中国粉体技术, 2014, 20(4), 60. 24 Ke Y K, Dong H R. Handbook of analytical chemistry-3B, 3nd Ed. Chemical Industry Press, China, 2015, pp. 530 (in Chinese). 柯以侃, 董慧茹. 分析化学手册-第三分册, 3版, 化学工业出版社, 2015, pp. 530. 25 Liu C, Ding D Y, Li Y C, et al. Materials Reports, 2022(16), 1 (in Chinese). 刘晨, 丁德一, 李逸辰, 等. 材料导报, 2022(16), 1. 26 Xu J J, Kang J J, Y W, et al. Materials Reports, 2022, 36(7), 97 (in Chinese). 许骏杰, 康嘉杰, 岳文, 等. 材料导报, 2022, 36(7), 97.