Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21090111-7    https://doi.org/10.11896/cldb.21090111
  高分子与聚合物基复合材料 |
氟硅树脂基超疏水涂层的组成设计及性能评价
李权威1, 刘乐乐2, 赵丕琪1,*, 于有良3, 邵明军3, 芦令超1
1 济南大学山东省建筑材料制备与测试技术重点实验室,济南 250022
2 中国国检测试控股集团西安有限公司,西安 710061
3 海汇集团,山东 日照 276500
Composition Design and Performance Assessment of Superhydrophobic Coating Based on Fluorine-Silicone Resin
LI Quanwei1, LIU Lele2, ZHAO Piqi1,*, YU Youliang3, SHAO Mingjun3, LU Lingchao1
1 Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
2 China Testing & Certification International Group Xi'an Co., Ltd., Xi'an 710061, China
3 Haihui Group Co., Ltd., Rizhao 276500, Shandong, China
下载:  全 文 ( PDF ) ( 5418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超疏水涂层具有优异的防水性、自清洁性、防腐蚀性能等优点,一直是国内外的研究热点,但如何简单高效地制备高稳定性的超疏水涂层仍是一个挑战。本工作以乙酸乙酯为溶剂介质,按既定工艺将氟硅(F-Si)树脂、气相二氧化硅(Hy-SiO2)、KH-550均匀分散以提高其相互匹配效果。通过正交试验,以涂层表面水接触角(WCA)、滚动角(RA)以及接触角摩擦损失率(FL)为参数确定了涂层的最佳配比,并在此基础上对超疏水涂层在不同基底上的作用效果及其耐沾污性、热稳定性、耐湿性进行了研究。结果表明,当F-Si树脂、Hy-SiO2、乙酸乙酯的质量比为1:0.2:15时,涂层的WCA高达154.3°,RA为1.7°,FL为8.8%,具有优异的超疏水性能和稳定性。不同基材类型对涂层的超疏水性有很大的影响,但在水泥基底上性能最优,并通过SEM分析发现,水泥基底表面具有微米级粗糙度,与超疏水涂层中的纳米粒子共同构筑形成了超疏水表面的两个必要条件之一的微-纳米粗糙结构。涂层在300 ℃下加热1 h后在相对湿度40%下放置6 d仍具有超疏水效果和较优的耐沾污、耐热性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李权威
刘乐乐
赵丕琪
于有良
邵明军
芦令超
关键词:  超疏水  水接触角  氟硅树脂  疏水气相二氧化硅  正交实验设计    
Abstract: The superhydrophobic coating has attracted increasing attention due to excellent water resistance, self-cleaning and corrosion resistance. However, the simple and efficient preparation method of superhydrophobic coating with high stability is a major challenge. In this study, fluorine-silicone (F-Si) resin, hydrophobic fumed silica (Hy-SiO2) and KH-550 were uniformly dispersed according to the established process using ethyl acetate as solvent medium to improve their matching effect. The optimum ratio of superhydrophobic coatings was determined by an orthogonal test with water contact angle (WCA), rolling angle (RA) and friction loss rate (FL) as parameters. On this basis, the effect of superhydrophobic coatings on different substrates, its stain resistance, thermal stability and moisture resistance were studied. The results show that the coating has a WCA of 154.3°, RA of 1.7°, FL of 8.8%, and excellent stability when m(F-Si resin)∶m(Hy-SiO2)∶m(ethyl acetate)=1:0.2:15. Different substrate types have great influence on the superhydrophobicity of the coating, but the performance was the best on the cement substrate. Through SEM analysis, it is found that the surface of the cement substrate has micron-level roughness, which co-constructs with the nano-particles in the superhydrophobic coating, forming the micro-nano-rough structure of the superhydrophobic surface. In addition, the coating still has the superhydrophobicity, better stain resistance and heat resistance after being heated at 300 ℃ for 1 h and placed at 40% relative humidity for 6 d.
Key words:  superhydrophobic    water contact angle (WCA)    fluorine-silicone (F-Si) resin    hydrophobic fumed silica (Hy-SiO2)    orthogonal design
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TQ638  
基金资助: 国家重点研发计划(2018YFD1101003-06);国家自然科学基金(U1806222;52172021);山东省自然科学基金(ZR2021ME123)
通讯作者:  *赵丕琪,济南大学副教授、硕士研究生导师,2015年7月毕业于同济大学,获材料学博士学位。目前主要从事特种水泥(矿物)的表征与水化机理、水泥与混凝土制品、海工修补材料和功能性复合涂层等方面的研究。以第一/通信作者发表SCI/EI论文30余篇,授权发明专利15项。mse_zhaopq@ujn.edu.cn   
作者简介:  李权威,2019年6月于济南大学获得工学学士学位。现为济南大学建筑材料制备与测试技术重点实验室硕士研究生,在赵丕琪老师的指导下进行科研工作。目前主要研究领域为功能性复合涂层材料。
引用本文:    
李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
LI Quanwei, LIU Lele, ZHAO Piqi, YU Youliang, SHAO Mingjun, LU Lingchao. Composition Design and Performance Assessment of Superhydrophobic Coating Based on Fluorine-Silicone Resin. Materials Reports, 2023, 37(9): 21090111-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090111  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21090111
1 Zhang X L, Liu S F, Liu L L. Textile Auxiliaries, 2010, 27(10), 4 (in Chinese).
张晓莉, 刘书芳, 刘玲玲. 印染助剂, 2010, 27(10), 4.
2 Wang J, Shi X T, Feng L B, et al. Materials Reports B:Research Papers, 2018, 32(12), 5 (in Chinese).
王晶, 史雪婷, 冯利邦, 等. 材料导报:研究篇, 2018, 32(12), 5.
3 Qian H, Xu D, Du C, et al. Journal of Materials Chemistry A, 2017, 5(5), 2355.
4 Xie Q W, Quan X J, Li R H, et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(6), 8 (in Chinese).
谢清伟, 全学军, 李瑞恒, 等. 重庆理工大学学报(自然科学), 2017, 31(6), 8.
5 Xue C H, Guo X J, Ma J Z, et al. ACS Applied Materials Interfaces, 2015, 7(15), 8251.
6 Barthlott C N. Annals of Botany, 1997(6), 667.
7 Qu M, Liu S, He J, et al. Applied Surface Science, 2017, 410, 299.
8 Jiang L. Chemical Industry and Engineering Progress, 2003, 22(12), 1258 (in Chinese).
江雷. 化工进展, 2003, 22(12), 1258.
9 Wang N, Tang L, Tong W, et al. Materials & Design, 2018, 156, 320.
10 Karapanagiotis I, Manoudis P N, Savva A, et al. Surface & Interface Analysis, 2012, 44(7), 870.
11 Zhang Y X. Study on contact angle of material surface. Master's Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
张云霞. 材料表面的接触角研究. 硕士学位论文, 哈尔滨工业大学, 2009.
12 Wang H Y, Lin D, Zhang X G, et al. CIESC Journal, 2021, 72(2), 12 (in Chinese).
汪怀远, 林丹, 张曦光, 等. 化工学报, 2021, 72(2), 12.
13 Li G B, Liu H F, Li J H, et al. Polymer Materials Science & Engineering, 2020, 36(12), 142 (in Chinese).
李国滨, 刘海峰, 李金辉, 等. 高分子材料科学与工程, 2020, 36(12), 142.
14 Zhang X, Guan J H, Yin H W, et al. Electroplating & Finishing, 2021, 40(2), 132 (in Chinese).
张欣, 关金鹤, 尹华伟, 等. 电镀与涂饰, 2021, 40(2), 132.
15 Ellinas K, Tserepi A, Gogolides E. Advances in Colloid and Interface Science, 2017, 250, 132.
16 Zhang Z M, Chen Y, Sun Z X, et al. Surface Technology, 2021, 50(1), 277 (in Chinese).
张秩鸣, 陈寅, 孙振新, 等. 表面技术, 2021, 50(1), 277.
17 Qi Y, Yang Z, Huang W, et al. Applied Surface Science, 2021, 538, 148131.
18 Li K Q, Zeng X, Li H, et al. Applied Surface Science, 2014, 298, 214.
19 Wang H, Tang L, Wu X, et al. Applied Surface Science, 2007, 253(22), 8818.
20 Qian L H, Luo Y F, Jia Z X, et al. Journal of Functional Materials, 2013, 44(5), 722 (in Chinese).
钱立海, 罗远芳, 贾志欣, 等. 功能材料, 2013, 44(5), 722.
21 Miller D. Journal of Colloid and Interface Science, 1994, 164(1), 252.
22 Jiang Z L. Study on the preparation and performance of heat-resistant and hydrophobic polyorganosiloxane coating, Master's Thesis, Donghua University, China, 2013 (in Chinese).
江振林. 聚硅氧烷耐热疏水涂层的制备与性能研究. 硕士学位论文, 东华大学, 2013.
23 Wang X, Li L, Cheng N, et al. Chemical Journal of Chinese Universities, 2012, 33(4), 5 (in Chinese).
王郗, 李莉, 陈宁, 等. 高等学校化学学报, 2012, 33(4), 5.
24 Guo Z K, Preparation andsurface modification of nano-Zn O and characteristics of ZnO/PU composite coatings. Master's Thesis, Chongqing University, China, 2012 (in Chinese).
郭正奎. 纳米ZnO的制备和表面改性及ZnO/PU复合涂料的研究. 硕士学位论文, 重庆大学, 2012.
25 Wang F F, Feng Q M, Wang W Q, et al. Materials Reports B:Research Papers, 2014, 28(18), 5 (in Chinese).
王凡非, 冯启明, 王维清, 等. 材料导报:研究篇, 2014, 28(18), 5.
[1] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[2] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[3] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[4] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[5] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[6] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[7] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[8] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[9] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[10] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[11] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[12] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[13] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[14] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[15] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed