Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21100243-17    https://doi.org/10.11896/cldb.21100243
  无机非金属及其复合材料 |
水泥基超疏水材料自清洁技术研究进展
赵毅1,*, 王佳1, 周娇1, 王梦雨2, 杨臻2
1 重庆交通大学材料科学与工程学院,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
Research Progress of Self-cleaning Technology of Cement-based Superhydrophobic Materials
ZHAO Yi1,*, WANG Jia1, ZHOU Jiao1, WANG Mengyu2, YANG Zhen2
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074,China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074,China
下载:  全 文 ( PDF ) ( 25196KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超疏水材料是一种新型智能仿生材料,具有优良的自清洁、抗凝冰、防腐等性能,已广泛应用于航天、建筑、电力等领域。但在公路交通领域尚处于探索研究阶段。水泥基超疏水材料自清洁技术源于自然界的“荷叶效应”,超疏水表面的微纳结构和低表面能降低了污染物与涂层的粘附力,赋予超疏水表面优异的自清洁性,为水泥基材料的主动防污技术提供了新思路。
目前,水泥基超疏材料自清洁理论与技术尚不成熟,主要通过表面微纳米复合结构和低表面能化学物质协同制备水泥基超疏水材料,从而实现水泥基材料自清洁功能。水泥基超疏水材料的制备技术主要包括表面疏水改性和本体疏水改性两种。硅烷/硅氧烷类和硬脂酸等疏水材料因其环保、成本相对低廉,使用频率较高。水泥基表面超疏水涂层处理类型主要包括涂覆法、模板法、层层自组装法等。表面超疏水改性对水泥基材料力学强度的影响较小,而整体超疏水改性因内掺疏水材料,延缓水泥水化反应,降低了水泥基材料的力学强度。水泥基表面超疏水涂层因其施工简便、性价比高、能耗低,应用更为广泛。水泥基超疏水材料自清洁性能评价方法尚未统一,其中以模拟污染物收集法应用较为广泛。由于水泥基材料工程结构复杂,影响因素众多,从实际工程应用来看,水泥基超疏水材料的制备技术、评价方法、耐久性仍需进一步研究。
本文归纳了水泥基超疏水材料自清洁技术的研究进展,分别对超疏水表面自清洁机理、水泥基超疏水材料制备技术、水泥基超疏水材料性能、水泥基超疏水材料自清洁性能评价方法等方面进行了综述,分析了水泥基超疏水材料自清洁技术面临的问题并展望了其前景,以期为制备环保、耐久的新型水泥基超疏水材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵毅
王佳
周娇
王梦雨
杨臻
关键词:  水泥基材料  超疏水材料  自清洁  制备技术  评价方法    
Abstract: Superhydrophobic materials, as a new family of intelligent bionic materials, have been widely used in aerospace, construction, electricity gene-ration and other fields, due to their excellent self-cleaning, anti-ice-condensation and anti-corrosion properties; however, their use in the highway transportation field is still in the exploratory stage of research. The self-cleaning properties of cement-based superhydrophobic materials originate from the ‘lotus effect' found in nature. The micro-nano structure and low surface energy of a superhydrophobic surface reduce adhesion between pollutants and the coating. These two effects endow the surface of a cement-based material with excellent self-cleaning properties, thereby providing a new paradigm for the active antifouling of such materials.
The theory surrounding the self-cleaning behavior of cement-based superhydrophobic materials is presently immature, as is the corresponding technology. Cement-based superhydrophobic materials are mainly prepared through the cooperation of surface micro-nano composite structures and low surface energy chemicals, which facilitate their self-cleaning functions. Techniques for preparing cement-based superhydrophobic mate-rials mainly include hydrophobically modifying surfaces and integrating hydrophobic modifications. Hydrophobic materials like silanes/siloxanes and stearic acid are frequently used, because they are environmentally friendly and inexpensive. Treatment methods that endow the surfaces of cement-based materials with superhydrophobicity mainly include coating, templating, and layer-by-layer self-assembly. Superhydrophobically modifying a surface has little effect on the mechanical strength of the cement-based material, while integral superhydrophobic modification delays cement hydration reactions and reduces the mechanical strength of the cement-based material through the inclusion of the hydrophobic material. Cement-based superhydrophobic surface coatings are more widely used, because of simple construction, cost effectiveness, and low energy consumption. While methods for evaluating the self-cleaning performance of cement-based superhydrophobic materials have not been unified, the simulated pollutant collection method is widely used. Preparation techniques, evaluation methods and material durability require further study from the perspective of practical engineering applications, as multiple factors affect the engineering structures of cement-based superhydrophobic materials.
In this paper, we summarize progress in self-cleaning-technology research for cement-based superhydrophobic materials. The self-cleaning mechanisms of superhydrophobic surfaces, preparation technologies, performance analyses and methods for evaluating the self-cleaning performance of these materials are introduced. Problems associated with this self-cleaning technology are discussed, and prospects are proposed, with the aim of providing a reference for the preparation of durable and environmentally friendly new cement-based superhydrophobic materials.
Key words:  cement based materials    superhydrophobic material    self cleaning    preparation technology    evaluation method
发布日期:  2023-03-27
ZTFLH:  U416.217  
基金资助: 重庆市研究生联合培养基地建设项目(JDLHPYJD2021011);重庆交通大学研究生科研创新项目(2019S0150);重庆交通大学大学生创新创业训练计划(S202210618044)
通讯作者:  *赵毅,博士,重庆交通大学材料科学与工程学院教授、硕士研究生导师。2017年6月在重庆交通大学交通运输工程专业取得博士学位;2018年至今在招商局重庆交通科研设计院有限公司进行博士后研究工作。主要从事功能性路面材料研发与应用技术研究。近年来,在路面材料领域发表SCI/EI论文10余篇,包括Construction and Building Materials、Progress in Organic Coatings、《建筑材料学报》《哈尔滨工业大学学报》等。1585513635@qq.com   
引用本文:    
赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
ZHAO Yi, WANG Jia, ZHOU Jiao, WANG Mengyu, YANG Zhen. Research Progress of Self-cleaning Technology of Cement-based Superhydrophobic Materials. Materials Reports, 2023, 37(6): 21100243-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100243  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21100243
1 Ye X D, Cai D B, Hou J W, et al. Acta Materiae Compositae Sinica, 2018, 35(12), 3271(in Chinese).
叶向东, 蔡东宝, 侯俊文, 等. 复合材料学报, 2018, 35(12), 3271.
2 Rabajczyk A, Zielecka M, Klapsa W, et al. Materials, 2021, 14, 2161.
3 Yao H, Xie Z, Huang C, et al. Construction and Building Materials, 2021, 299, 124255.
4 Wang F, Xie T, Ou J, et al. Journal of Alloys and Compounds, 2020, 823, 153702.
5 Monteiro P, Miller S A, Horvath A. Nature Materials, 2017, 16(7), 698.
6 Zhang P, Cong Y, Vogel M, et al. Construction and Building Materials, 2017, 148, 113.
7 Ann K Y, Ahn J H, Ryou J S. Construction and Building Materials, 2009, 23(1), 239.
8 Al-Dulaijan S U. Construction and Building Materials, 2007, 21(8), 1792.
9 Gao Y L, He B, Jiang Z W, et al. Journal of Building Materials, 2020, 23(1), 192(in Chinese).
高英力, 何倍, 蒋正武, 等. 建筑材料学报, 2020, 23(1), 192.
10 Baeyer H C. Sciences, 2000, 40, 12.
11 Zhang X, Shi F, Niu J, et al. Journal of Materials Chemistry, 2008, 18, 621.
12 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
13 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79(6), 667.
14 Onda T, Shibuichi S, Satoh N, et al. Langmuir, 1996, 12(9), 2125.
15 Guo Z, Liu W. Plant Science, 2007, 172(6), 1103.
16 Feng L, Li S H, Li Y S, et al. Advanced Materials, 2002, 14(24), 1857.
17 Arabzadeh A, Halil C, Kim S, et al. Construction and Building Materials, 2017, 141, 393.
18 Wang S, Jiang L. Advanced Materials, 2007, 19(21), 3423.
19 Lu Z C, Zheng J Y, Yu Y S. Surface Technology, 2021, 50(1), 138(in Chinese).
卢志成, 郑佳宜, 余延顺. 表面技术, 2021, 50(1), 138.
20 Young T. Philosophical Transactions of the Royal Society of London, 1805(95), 65.
21 Cao X K, Sun X G, Cai G Y, et al. Progress in Chemistry, 2021, 33(9), 1525(in Chinese).
曹祥康, 孙晓光, 蔡光义, 等. 化学进展, 2021, 33(9), 1525.
22 Zhao Y, Qin M, Wen K Q, et al. Materials Reports, 2021, 35(1), 1141(in Chinese).
赵毅, 秦旻, 文凯琪, 等. 材料导报, 2021, 35(1), 1141.
23 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
24 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 105557.
25 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
26 Hu H B, Cao G, Zhang M Z, et al. Materials Reports A:Review Papers, 2020, 34(7), 13175(in Chinese).
胡海豹, 曹刚, 张梦卓, 等. 材料导报:综述篇, 2020, 34(7), 13175.
27 Li X B, Liu Y. Materials Reports B:Research Papers, 2009, 23(12), 101(in Chinese).
李小兵, 刘莹. 材料导报:研究篇, 2009, 23(12), 101.
28 Zhu R J. Surface microstructure of cement concrete on super hydrophobic pavement and model research. Master's Thesis, Changsha University of Science and Technology, China, 2019(in Chinese).
朱瑞娟. 超疏水路面水泥混凝土表面微观结构及模型研究. 硕士学位论文, 长沙理工大学, 2019.
29 Xiao Y H, Zheng J, He Y M, et al. China Surface Engineering, 2019, 32(6), 150(in Chinese).
肖易航, 郑军, 何勇明, 等. 中国表面工程, 2019, 32(6), 150.
30 Extrand C W. Langmuir, 2002, 18, 7991.
31 Xiao Y H, Zheng J, Liu R H, et al. Hot Working Technology, 2019, 48(10), 15(in Chinese).
肖易航, 郑军, 刘荣和, 等. 热加工工艺, 2019, 48(10), 15.
32 Koch B, Amirfazli A, Elliott J. The Journal of Physical Chemistry C, 2014, 118(32), 18554.
33 Kim H, Kim M H, Kim J. Journal of Micromechanics and Microengineering, 2009, 19(9), 095002.
34 Zhao M R, Zhou H Y, Kang W Q, et al. Acta Materiae Compositae Sinica, 2021, 38(2), 361(in Chinese).
赵美蓉, 周惠言, 康文倩, 等. 复合材料学报, 2021, 38(2), 361.
35 Jeong H E, Kwak M K, Chan I P, et al. Journal of Colloid & Interface Science, 2009, 339(1), 202.
36 Cai T M, Jia Z H, He J C, et al. Chemical Industry and Engineering Progress, 2014, 33(8), 2123(in Chinese).
蔡泰民, 贾志海, 贺吉昌, 等. 化工进展, 2014, 33(8), 2123.
37 Shen K K, Lv X M, Jia Y, et al. Surface Technology, 2021, 50(9), 108(in Chinese).
沈可可, 吕晓猛, 贾瑛, 等. 表面技术, 2021, 50(9), 108.
38 Kijlstra J, Reihs K, Klamt A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1), 521.
39 Frenkel Y I. Journal of Experimental and Theoretical Physics, 1948, 18, 659.
40 Yang C W, Hao P F, He F. Chinese Science Bulletin, 2009, 54(4), 436(in Chinese).
杨常卫, 郝鹏飞, 何枫. 科学通报, 2009, 54(4), 436.
41 Furmidge C. Journal of Colloid Science, 1962, 17(4), 309.
42 Wang X K, Zhang Y F, Yu X Q. Surface Technology, 2020, 49(12), 103. (in Chinese).
汪希奎, 张友法, 余新泉. 表面技术, 2020, 49(12), 103.
43 Miwa M, Nakajima A, Fujishima A, et al. Langmuir, 2000, 16(13), 5754.
44 Lv C, Yang C, Hao P, et al. Langmuir, 2010, 26(11), 8704.
45 Kumar D, Wu X H, Fu Q, et al. Applied Surface Science, 2015, 344, 205.
46 Fürstner R, Barthlott W, Neinhuis C, et al. Langmuir, 2005, 21(3), 956.
47 Parkin I P, Palgrave R G. Journal of Materials Chemistry, 2005, 15(17), 1689.
48 Yu M, Chen S, Zhang B, et al. Langmuir, 2014, 30(45), 13615.
49 Chen S. Surface mechanics analysis of self cleaning effect of superhydrophobic surfaces. Master's Thesis, Southwest Jiaotong University, China, 2011(in Chinese).
陈胜. 超疏水表面自清洁效应的表面力学分析. 硕士学位论文, 西南交通大学, 2011.
50 Liu M, Wang S, Jiang L. Nature Reviews Materials, 2017, 2(7), 17036.
51 Xu J K, Cai Q Q, Yu Z J, et al. Chemical Industry and Engineering Progress, 2021, 33(6), 958(in Chinese).
许金凯, 蔡倩倩, 于占江, 等. 化学进展, 2021, 33(6), 958.
52 Xing M, Lei X P, Guan X L, et al. Surface Technology, 2021, 50(9), 152(in Chinese).
邢敏, 雷西萍, 关晓琳, 等. 表面技术, 2021, 50(9), 152.
53 Bao T, Wang D. Surface Technology, 2019, 48(8), 156(in Chinese).
鲍田, 王东. 表面技术, 2019, 48(8), 156.
54 Yang F S, Zhang Z Y, Li Y Q, et al. Materials Reports, 2021, 35(12), 12190(in Chinese).
杨福生, 张振宇, 李云清, 等. 材料导报, 2021, 35(12), 12190.
55 Liu P, Gao Y, Wang F, et al. Journal of Cleaner Production, 2017, 156, 775.
56 She W, Wang X, Miao C, et al. Construction and Building Materials, 2018, 181, 347.
57 Zhang Z Q, Qiang Y K, Zhang S H, et al. Materials Reports, 2021, 35(10), 10073(in Chinese).
张争奇, 强亚奎, 张世豪, 等. 材料导报, 2021, 35(10), 10073.
58 Latthe S S, Sutar R S, Kodag V S, et al. Progress in Organic Coatings, 2019, 128, 52(in Chinese).
59 Xia F, Jiang L. Advanced Materials. 2008, 20(15), 2842.
60 Liu Z, Yang X, Pang G, et al. Surface and Coatings Technology, 2019, 375, 527.
61 Zheng B Y, Di Y L, Wang H D, et al. Materials Reports A:Review Papers, 2020, 34(12), 23109(in Chinese).
郑博源, 底月兰, 王海斗, 等. 材料导报:综述篇, 2020, 34(12), 23109.
62 Zhang F, Shi Z, Chen L, et al. Surface and Coatings Technology, 2017, 315, 385.
63 Lv Z A, Yu S R, Song K S, et al. Ceramics International, 2020, 46(10), 14872.
64 Kesmez mer. Ceramics International, 2020, 1205, 127572.
65 Calia A, Lettieri M, Masieri M. Building and Environment, 2016, 110, 1.
66 Kumara A K V, Johna J, Sooraj T R, et al. Applied Surface Science, 2019, 472, 40.
67 Wang W, Wang S, Yao D, et al. Construction and Building Materials, 2020, 238, 117626.
68 Li K, Wang Y, Wang X, et al. Cement and Concrete Composites, 2021, 118, 103973.
69 Muzenski Scott, Flores-Vivian Ismael, Sobolev Konstantin. Construction and Building Materials, 2020, 244, 118354.
70 Song J, Zhao D, Han Z, et al. Journal of Materials Chemistry A, 2017, 5, 14542.
71 Lei L, Wang Q, Xu S, et al. Construction and Building Materials, 2020, 251, 118946.
72 Qu Z Y, Yu Q L. Construction and Building Materials, 2018, 191, 176.
73 Yao L, He J H. Progress in Materials Science, 2014, 61, 94.
74 Zhu C, Lv J, Chen L, et al. Construction and Building Materials, 2019, 220, 21.
75 Wang F, Lei S, Ou J, et al. Applied Surface Science, 2020, 507, 145016.
76 Zhu J, Liao K. Materials Chemistry and Physics, 2020, 250, 123064.
77 Yu J W, Zhang C Y, Kong X M, et al. Journal of the Chinese Ceramic Society, 2021, 49(2), 372(in Chinese).
喻建伟, 张朝阳, 孔祥明, 等. 硅酸盐学报, 2021, 49(2), 372.
78 Shahbazi R, Korayem A H, Razmjou A, et al. Construction and Building Materials, 2020, 233, 117238.
79 Dong B B, Wang F H, Hamidreza A, et al. ACS Applied Materials & Interfaces, 2019, 11(45), 42801.
80 Feng Z, Wang F, Xie T, et al. Construction and Building Materials, 2019, 227, 116678.
81 Diamanti M V, Luongo N, Massari S, et al. Construction and Building Materials, 2021, 280, 122442.
82 Hua B, Zhang L, Gu D. Applied Surface Science, 2018, 459, 54.
83 Zhu Y G, Kou S C, Poon C S, et al. Cement and Concrete Composites, 2013, 35, 32.
84 Yu J, Li S, Hou D, et al. Physical Chemistry Chemical Physics, 2019, 21, 19026.
85 Shen L, Jiang H, Wang T, et al. Progress in Organic Coatings, 2019, 129, 209.
86 Wang F, Liu H, Ou J, et al. Construction and Building Materials, 2021, 278, 122385.
87 Xu K, Ren S, Song J, et al. Chemical Engineering Journal, 2021, 403, 126348.
88 He B, Gao Y L, Qu L C, et al. Journal of Cleaner Production, 2019, 225, 1169.
89 Gao J, Geng Y G, Li S C, et al. Construction and Building Materials, 2021, 301, 124082.
90 Zhuang L Y, Li J, Liu W Y, et al. Surface Technology, 2021, 50(3), 239. (in Chinese).
庄良雨, 李娟, 刘维仪, 等. 表面技术, 2021, 50(3), 239.
91 Gao Y L, Li X K, Dai K M, et al. Materials Reports B:Research Papers, 2017, 31(7), 132(in Chinese).
高英力, 李学坤, 代凯明, 等. 材料导报:研究篇, 2017, 31(7), 132.
92 Vivian I F, Hejazi V, Kozhukhova M I, et al. ACS Applied Materials & Interfaces, 2013, 5(24), 13284.
93 Wang P, Yang Y, Wang H, et al. Surface and Coatings Technology, 2019, 362, 90.
94 Horgnies M, Chen J J. Cement and Concrete Composites, 2014, 52, 81.
95 Wang N, Wang Q, Xu S S, et al. Journal of Industrial and Engineering Chemistry, 2021, 103, 314.
96 Liu S J. Preparation of environmentally friendly super-hydrophobic concrete and its application in long-distance water transport channels in cold regions. Master's Thesis, Northwest A&F University, China, 2019. (in Chinese).
刘少军. 环保型超疏水混凝土制备及在寒区长距离输水渠道应用. 硕士学位论文, 西北农林科技大学, 2019.
97 Gao Y, He B, Xiao M, et al. Construction and Building Materials, 2018, 165, 548.
98 Li Y, Gou L, Wang H, et al. Materials Letters, 2019, 244, 31.
99 Song H, Tang M, Lei X, et al. Polymers, 2020, 12, 2187.
100 Lu Z Z, He Y, Wang J, et al. Surface Technology, 2020, 49(10), 169(in Chinese).
鲁浈浈, 何杨, 王杰, 等. 表面技术, 2020, 49(10), 169.
101 Wang F, Xie T, Lei S, et al. Construction and Building Materials, 2020, 246, 118466.
102 Wang X L, Wei S C, Zhu X Y, et al. Chinese Journal of Engineering, 43(3), 332(in Chinese).
王鑫磊, 魏世丞, 朱晓莹, 等. 工程科学学报, 43(3), 332.
103 Zhao Y, Liu Y, Liu Q, et al. Materials Letters, 2018, 233, 263.
104 Song J, Li Y, Xu W, et al. Journal of Colloid and Interface Science, 2019, 541, 86.
105 Yang F S, Zhang Z Y, Li Y Q, et al. Materials Reports, 2021, 35(12), 12190(in Chinese).
杨福生, 张振宇, 李云清, 等. 材料导报, 2021, 35(12), 12190.
106 Junaidi M U M, Azaman S, Ahmad N, et al. Progress in Organic Coa-tings, 2017, 111, 29.
107 Kong X, Liu H, Lu Z, et al. Cement and Concrete Research, 2015, 67, 168.
108 Tian L, Qiu L C. Materials Reports, 2021, 35(19), 19070(in Chinese).
田雷, 邱流潮. 材料导报, 2021, 35(19), 19070.
109 Li Q, Guo Z G. Journal of Materials Chemistry A, 2018(6), 13549.
110 Su F, Yao K. ACS Applied Materials & Interfaces, 2014, 6(11), 8762.
111 He Y. Preparation and antifreeze performance of epoxy resin/SiO2 coa-ting on concrete surface. Master's Thesis, Chongqing Jiaotong University, China, 2020(in Chinese).
何杨. 混凝土表面环氧树脂/SiO2涂层制备与抗凝冰性能研究. 硕士学位论文, 重庆交通大学, 2020.
112 Shen Y Z, Zheng S L, Tao J, et al. Superhydrophobicity and applications of hierarchical surfaces. Northwestern Polytechnical University Press, 2017, pp. 147 (in Chinese).
沈一洲, 郑顺丽, 陶杰, 等. 分级结构表面的超疏水特性与应用. 西北工业大学出版社, 2017, pp. 147.
113 China Building Material Council. Test method for dirt pickup resistance and stain remvoal of film of architectural coatings and paint, GB/T 9780-2013, Standards Press of China, China, 2013(in Chinese).
中国建筑材料联合会. 建筑涂料涂层耐沾污性试验方法, GB/T 9780-2013, 中国标准出版社, 2013.
114 Yu L Y, Li X Y, Luo H. China Adhesives, 2010, 19(3), 37(in Chinese).
喻兰英, 李新跃, 罗宏. 中国胶粘剂, 2010, 19(3), 37.
115 Huang X, Wang C, Zhu D. Coatings, 2021, 11(2), 220.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[3] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[4] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[5] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[6] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[7] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[8] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[9] 高丽娜, 陈文革, 李树丰. Ti3AlC2陶瓷粉末的研究现状及进展[J]. 材料导报, 2022, 36(20): 20090196-11.
[10] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[11] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[12] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[13] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构(英文)[J]. 材料导报, 2022, 36(12): 20100140-9.
[14] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[15] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed