Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21070107-7    https://doi.org/10.11896/cldb.21070107
  无机非金属及其复合材料 |
浆体流变性能对超高延性水泥基材料性能的影响
梁龙1, 张鑫1,2,3, 刘巧玲1,2,3,*
1 山东建筑大学土木工程学院,济南 250101
2 山东建筑大学建筑结构加固与地下空间工程教育部重点实验室,济南 250101
3 山东建筑大学工程鉴定加固研究院有限公司,济南 250013
Effect of Rheology on Properties of Ultra-high Ductility Cementitious Composites
LIANG Long1, ZHANG Xin1,2,3, LIU Qiaoling1,2,3,*
1 College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
2 Key Laboratory of Building Structural Retrofitting and Underground Space Engineering, Ministry of Education, Shandong Jianzhu University, Jinan 250101, China
3 Engineering Research Institute of Appraisal and Strengthening of Shandong Jianzhu University Co., Ltd., Jinan 250013, China
下载:  全 文 ( PDF ) ( 12855KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 浆体的流变性能是影响纤维在水泥基材料中分散性的关键因素,是采用聚乙烯(PE)纤维制备超高延性水泥基材料(Ultra-high ductility cementitious composites, UHDCC)的重要指标。本工作通过调整水胶比和外加剂的掺量调控浆体的流变性能,研究浆体的屈服应力和塑性黏度对UHDCC流动性、拉伸、抗压和断裂性能的影响。结果表明:调整水胶比和外加剂可以调控UHDCC浆体的流变特性,其流变行为符合假塑性流体。浆体塑性黏度在1.91~ 6.00 Pa·s范围内的UHDCC呈现不同程度的拉伸应变硬化行为;塑性黏度的最佳范围为3.06 ~ 4.60 Pa·s,此时纤维在基体中分散更加均匀,因此UHDCC具备更加优异的拉伸性能和断裂韧度,其拉伸应变可以超过10%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁龙
张鑫
刘巧玲
关键词:  聚乙烯纤维  超高延性水泥基材料  流变特性  拉伸性能  断裂韧度    
Abstract: The homogeneous dispersion of fibers determined by the rheological properties of mortar is an essential index for developing ultra-high ductility cementitious composites (UHDCC) with polyethylene(PE)fibers. In this work, the water-binder ratio and content of admixtures were adjusted to control the rheological properties of mortar, and the influence of the yield stress and plastic viscosity of mortar on the flowability, tensile, compressive and fracture properties of UHDCC were studied. The results showed that the rheological properties of UHDCC mortar could be controlled by adjusting water-binder ratio and admixtures, according to the behavior of pseudoplastic fluid. UHDCC with the plastic viscosity of 1.91 Pa·s to 6.00 Pa·s exhibited the tensile strain-hardening behavior with various degrees. The plastic viscosity of mortar controlled within a reasonable range, around 3.06 Pa·s to 4.60 Pa·s, could achieve superior tensile capacity with a tensile strain up to 10% due to a better dispersion of fibers.
Key words:  polyethylene fiber    ultra-high ductility cementitious composite    rheological property    tensile property    fracture toughness
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52038006;52078282);中国工程科技中长期发展战略研究领域战略研究项目“面向2035的中国竹建筑工程发展战略和关键技术研究” (2018-ZCQ-06)
通讯作者:  *刘巧玲,山东建筑大学土木工程学院教授、硕士研究生导师。2015年毕业于东南大学,获得工学博士学位。主要从事纳米纤维素材料在水泥基材料中的应用。发表论文10余篇,获得国家发明专利5项。主持国家自然科学基金项目2项。lql263@163.com   
作者简介:  梁龙,2021年6月毕业于山东建筑大学,获得工程硕士学位。主要从事植物纳米纤维素材料在水泥基材料中的应用和超高延性水泥基材料的制备研究。
引用本文:    
梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
LIANG Long, ZHANG Xin, LIU Qiaoling. Effect of Rheology on Properties of Ultra-high Ductility Cementitious Composites. Materials Reports, 2023, 37(5): 21070107-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070107  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21070107
1 Li V C, Leung C K Y. Journal of Engineering Mechanics, 1992, 118(11), 2246.
2 Li V C. In: Engineered cementitious composites (ECC): Bendable concrete for sustainable and resilient infrastructure. Springer, Berlin, 2019, pp.1.
3 Yang E H, Yang Y, Li V C. ACI Materials Journal, 2007, 104(6), 620.
4 Kanda T, Li V C. Journal of Materials in Civil Engineering, 1998, 10(1), 5.
5 Wang Y C, Hou M J, Yu J T, et al. Materials Reports B:Research Papers, 2018, 32(5), 3535(in Chinese).
王义超, 侯梦君, 余江滔, 等. 材料导报:研究篇, 2018, 32(5), 3535.
6 Yu K Q, Yu J T, Dai J G, et al. Construction and Building Materials, 2018, 158, 217.
7 Ranade R, Li V C, Stults M D, et al. ACI Materials Journal, 2013, 110(4), 375.
8 Zhang L H, Guo L P, Sun W, et al. Journal of Southeast University(Natural Sciences Edition), 2014, 44(5), 1037(in Chinese).
张丽辉, 郭丽萍, 孙伟, 等. 东南大学学报(自然科学版), 2014, 44(5), 1037.
9 Li M, Li V C. Materials and Structures, 2013, 46(3), 405.
10 Cappellari M, Daubresse A, Chaouche M. Construction and Building Materials, 2013, 38, 950.
11 Kanda T, Kanakubo T, Nagai S, et al. In: International RILEM workshop on high performance fiber reinforced cementitious composites in structural applications, Springer, Berlin, 2015, pp. 229.
12 Cao M L, Xu L, Li Z W. Journal of Building Materials, 2017, 20(1), 112(in Chinese).
曹明莉, 许玲, 李志文. 建筑材料学报, 2017, 20(1), 112.
13 Yang E H, Şahmaran M, Yang Y Z, et al. ACI Materials Journal, 2009, 106(4), 357.
14 Ye J H, Yu J T, Cui C, et al. Cement and Concrete Composites, 2021, 115, 103852.
15 Mahmud G H, Yang Z J, Hassan A M T. Construction and Building Materials, 2013, 48, 1027.
16 Xu S, Reinhardt H W. International Journal of Fracture, 2000, 104(2), 181.
17 Xu S L, Zhu Y, Zhang X F. Journal of Hydraulic Engineering, 2008, 39(1), 41(in Chinese).
徐世烺, 朱榆, 张秀芳. 水利学报, 2008, 39(1), 41.
[1] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[2] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[3] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[4] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[5] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[6] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[7] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[8] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[9] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[10] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[11] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[12] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[13] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[14] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[15] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed