Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21010089-5    https://doi.org/10.11896/cldb.21010089
  无机非金属及其复合材料 |
生物重油对老化50#沥青的再生效果评价
范世平1, 朱洪洲1,2, 钟伟明3
1 重庆交通大学土木工程学院, 重庆 400074
2 交通土建工程材料国家地方联合实验室, 重庆 400074
3 湖南省交通科学研究院有限公司, 长沙 410015
Rejuvenation Effect Evaluation of Heavy Bio-oil on Aging 50# Asphalt
FAN Shiping1, ZHU Hongzhou1,2, ZHONG Weiming3
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 National & Local Joint Engineering Laboratory of Transportation and Civil Engineering Materials, Chongqing 400074, China
3 Hunan Communications Research Institute Co., Ltd., Changsha 410015, China
下载:  全 文 ( PDF ) ( 4422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价生物重油对老化50#沥青的再生效果,采用旋转薄膜烘箱试验(RTFOT)对50#沥青进行老化,然后在老化沥青中掺入生物重油,使用高速剪切机制备生物重油再生沥青。最后通过沥青基本性能试验和动态剪切流变仪(DSR)分析沥青的高温流变特性及疲劳性能。此外,使用热重分析(TGA)和差示扫描量热法(DSC)研究生物重油的热稳定性。研究结果表明:在25~200 ℃,生物重油的质量损失仅为0.35%,说明生物重油具有较好的热稳定性。生物重油对老化50#沥青的再生效果显著,随着生物重油含量的增加,再生沥青的针入度、延度、相位角和复数模量指数均增大,而软化点、车辙因子和疲劳因子降低,即沥青黏性特征、低温抗裂性和疲劳耐久性增强,但是高温抗车辙性能降低。加载频率越小,沥青黏性特征越强,抗车辙性能越弱,在低速交通荷载下,沥青易产生不可恢复的永久变形和车辙病害。本工作建议生物重油掺量不宜超过6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范世平
朱洪洲
钟伟明
关键词:  道路工程  老化50#沥青  生物重油  DSR试验  流变特性  热重分析    
Abstract: This work investigated the rejuvenating effect of heavy bio-oil on an aged 50# asphalt binder. Herein, the 50# asphalt binder was aged by using the rotary film oven test (RTFOT); subsequently, the heavy bio-oil was mixed into the aged asphalt binder, and the heavy bio-oil rejuvenated asphalt was prepared by using a high-speed shear machine. Finally, through physical property tests and dynamic shear rheology (DSR) tests, the rheological and fatigue properties of all asphalt binders were analyzed. Consequently, by using the results of the aforementioned tests, the rejuvenation effect of heavy bio-oil on the properties of aged asphalt binders was discussed. In addition, the thermal stability of heavy bio-oil was studied though thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) test. The results demonstrated that the mass loss of the heavy bio-oil was only 0.35% in the temperature interval of 25—200 ℃, which indicated a good thermal stability. The heavy bio-oil improved the penetration and ductility, and reduced the softening point of aged asphalt. With the increase in heavy bio-oil content, the rutting factor and fatigue factor of rejuvenated asphalt binders decreased, while the phase angle and complex modulus index increased, which indicated that the asphalt viscosity characteristics, temperature sensitivity and fatigue durability were enhanced with the high-temperature rutting resistance weakened. Furthermore, as the loading frequency was decreased, the asphalt viscosity characteristics were enhanced, and the rutting resistance was weakened. The asphalt is more prone to irreversible permanent deformation and rutting damage under low-speed traffic loading. According to the results obtained in this work, it is recommended that the amount of heavy bio-oil admixture should not exceed 6%.
Key words:  road engineering    aged 50# asphalt    heavy bio-oil    DSR test    rheological property    thermogravimetric analysis
发布日期:  2022-06-09
ZTFLH:  U414  
基金资助: 高寒高海拔地区道路工程安全与健康国家重点实验室开放基金(YGY 2017 KYPT-02)
通讯作者:  zhuhongzhouchina@cqjtu.edu.cn   
作者简介:  范世平,2018 年毕业于重庆交通大学,获工学硕士学位。现为重庆交通大学土木工程学院博士研究生,指导老师为朱洪洲教授。主要从事沥青路面结构与材料性能方面的研究。
朱洪洲,现为重庆交通大学土木工程学院教授、博士研究生导师,1998年毕业于重庆交通学院(现重庆交通大学),获学士学位;2001年毕业于重庆交通学院(现重庆交通大学),获工学硕士学位;2005年毕业于东南大学,获工学博士学位,2013—2014年公派美国罗格斯新泽西州立大学作访问学者。近年来主持国家自然科学基金项目2项、科技部重点专项子课题1项、交通运输部建设科技项目2项,参编行业和地方标准规范4部,发表科研论文90余篇,主要从事功能性路面、路面材料疲劳损伤理论等方面的研究。
引用本文:    
范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
FAN Shiping, ZHU Hongzhou, ZHONG Weiming. Rejuvenation Effect Evaluation of Heavy Bio-oil on Aging 50# Asphalt. Materials Reports, 2022, 36(11): 21010089-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010089  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21010089
1 Cui Y N, Li X S, Zhang S Y. Journal of Building Materials, 2021(5), 1105(in Chinese).
崔亚楠, 李雪杉, 张淑艳. 建筑材料学报, 2021(5), 1105.
2 Marko O,Gustavo M P,Sara B, et al. Construction and Building Mate-rials, 2020, 234, 117323.
3 Zhang J, Sun H, Jiang H, et al. Construction and Building Materials, 2019, 215, 660.
4 Guo P, Xie F Z, Meng J W, et al. Materials Reports A:Review Papers, 2020, 34 (7), 13100(in Chinese).
郭鹏, 谢凤章, 孟建玮, 等. 材料导报:综述篇,2020,34(7),13100.
5 Lee S H, Tam A B, Kim J, et al. Construction and Building Materials, 2019, 220, 628.
6 Wang J, Qing Y C, Zeng W, et al. Journal of Building Materials, 2020, 23(1), 77(in Chinese).
王杰, 秦永春, 曾蔚, 等. 建筑材料学报, 2020, 23(1), 77.
7 Wu S, Zhao Z, Xiao Y, et al. Construction and Building Materials, 2017, 155, 1158.
8 Lin J, Hong J, Liu J, et al. Construction and Building Materials, 2016, 122, 753.
9 Zhao K C, Wang Y H, Chen Y, et al. Journal of Building Materials, 2020,23(5), 1130(in Chinese).
赵可成,王予红,陈宇,等. 建筑材料学报, 2020, 23(5), 1130.
10 Liu C L, Jiang K, Wu C F, et al. Journal of Building Materials, 2021(6), 1255(in Chinese).
刘崇麟,蒋康,吴超凡,等. 建筑材料学报, 2021(6), 1255.
11 Zhang L H, Gong M H, Yang J, et al. Petroleum Asphalt, 2018, 32(6), 18(in Chinese).
张立华, 袭明辉, 杨军, 等. 石油沥青, 2018, 32(6), 18.
12 Tang B M, Cao X X, Zhu H Z, et al. China Journal of Highway and Transport, 2019, 32(4), 207(in Chinese).
唐伯明, 曹芯芯, 朱洪洲, 等. 中国公路学报, 2019, 32(4), 207.
13 Ding H B, Qiu Y J, Wang W Q, et al. Journal of Building Materials, 2017, 20(4), 646(in Chinese).
丁海波, 邱延峻, 王文奇, 等. 建筑材料学报, 2017, 20(4), 646.
14 Li R K, Ding H B, Sun Q. Journal of Building Materials, 2020, 23(3), 657(in Chinese).
李汝凯, 丁海波, 孙潜.建筑材料学报, 2020, 23(3), 657.
15 Gao X W, Liu C H. China Journal of Highway and Transport, 2019, 32(4), 235(in Chinese).
高新文, 刘朝晖. 中国公路学报, 2019, 32(4), 235.
16 Zhang J Y, Guo Y M, Tong T Z, et al. Petroleum Asphalt, 2014, 28(4), 11(in Chinese).
张佳运, 郭易木, 童天志, 等. 石油沥青, 2014, 28(4), 11.
17 Zhu H Z, Zhong W M, Wan Y Q, et al. Journal of Chongqing Jiaotong University (Natural Science Edition), 2018, 37(8), 23(in Chinese).
朱洪洲, 钟伟明, 万逸秋, 等. 重庆交通大学学报(自然科学版), 2018, 37(8), 23.
18 Hallizza Asli E A, Zargar M, Karim M R. Construction and Building Materials, 2012, 37, 398.
19 Zargar M, Ahmadinia E, Asli H, et al. Journal of Hazardous Materials, 2012, 233, 254.
20 Cao X J, Liu Y G, Cao X X, et al. Journal of Chang'an University (Natural Science Edition), 2019, 39(3), 27(in Chinese).
曹雪娟, 刘誉贵, 曹芯芯, 等. 长安大学学报(自然科学版), 2019, 39(3), 27.
21 Ma G Q. Highway Engineering, 2016,41(6), 227(in Chinese).
马高强. 公路工程, 2016, 41(6), 227.
22 Guo P, He Z, Xie F Z, et al. Applied Chemical Industry, 2020, 49(3), 602(in Chinese).
郭鹏, 何圳, 谢凤章, 等. 应用化工, 2020, 49(3), 602.
23 Li P L, Zhang Z Q, Wang B G, et al. Journal of Zhengzhou University Engineering Edition, 2008, 29(1), 119(in Chinese).
栗培龙, 张争奇, 王秉纲, 等. 郑州大学学报工学版, 2008, 29(1),119.
24 Sun D Q, Lin T B, Cao L H. Journal of Building Materials, 2015, 18 (2), 346(in Chinese).
孙大权, 林添坂, 曹林辉. 建筑材料学报, 2015, 18 (2),346.
25 Chen H H, Wu S P, Liu Q T, et al. Journal of Wuhan University of Technology, 2015, 37(12), 47(in Chinese).
陈浩浩, 吴少鹏, 刘全涛,等.武汉理工大学学报,2015,37(12),47.
26 Wei J G, Shi S, Zhou Y M, et al. Journal of Traffic and Transportation Engineering, 2019, 19(6), 14(in Chinese).
魏建国, 时松, 周育名, 等. 交通运输工程学报, 2019, 19(6), 14.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[5] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[6] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[7] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[8] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[9] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[10] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[11] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[12] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[13] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[14] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[15] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed