Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020108-7    https://doi.org/10.11896/cldb.21020108
  无机非金属及其复合材料 |
重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型
张永军1, 罗文波2,3,*
1 湘潭大学土木工程与力学学院,湖南 湘潭 411105
2 长沙学院土木工程学院,长沙 410022
3 湘潭大学岩土力学与工程安全湖南省重点实验室,湖南 湘潭 411105
Fractional Viscoelastoplastic Model for Permanent Deformation of Basalt Fiber Modified Asphalt Mixture Under Repeated Loading
ZHANG Yongjun1, LUO Wenbo2,3,*
1 College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
2 School of Civil Engineering, Changsha University, Changsha 410022, China
3 Hunan Key Laboratory of Geomechanics and Engineering Safety, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 4108KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为准确描述高温重复荷载下玄武岩纤维沥青混合料的非线性黏弹塑性力学行为,本工作在西原模型的基础上,考虑分数阶黏塑性和Rabotnov损伤律,构建了玄武岩纤维沥青混合料的非线性黏弹塑性力学模型。根据黏弹性力学理论推导了带间歇时间的半正矢波重复荷载作用下沥青混合料永久变形的模型表达式,并利用表达式对玄武岩纤维掺量分别为0.2%、0.3%、0.4%、0.5%(质量分数,下同)和不掺加纤维的改性沥青混合料的永久变形试验结果进行拟合,算法选取LM最优化算法,确定了全部模型参数。随后根据模型表达式和材料参数,计算了流动数FN、FN指数并与高温下动态模量及车辙试验的数据比较,研究了永久变形的变化规律。结果表明:该模型可以很好地描述重复荷载作用下不同玄武岩纤维掺量的沥青混合料三阶段永久变形特性;玄武岩纤维的掺入显著提高了混合料的高温性能,且其最佳掺量为0.3%;模型计算的流动数FN、FN指数与动态模量及动稳定度数据有较强的相关性,进一步验证了模型描述永久变形行为的准确性。最后对比了分数阶参数与流动数FN、FN指数的相关性,简要探讨了分数阶参数与沥青混合料高温性能的关联性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永军
罗文波
关键词:  道路工程  非线性黏弹塑性模型  分数阶黏壶  玄武岩纤维沥青混合料  永久变形    
Abstract: In order to describe the nonlinear viscoelastoplastic mechanical behavior of basalt fiber asphalt mixture under repeated load at high temperature accurately, based on the Nishihara model, a nonlinear fractional viscoelastoplastic creep model was proposed by considering the fractional order derivative viscoplasticity and Rabotnov's damage rate law. According to viscoelastic theory, the permanent deformation model expression of asphalt mixture under haversine load with intermittent time was deduced. Then, based on Levenberg-Marquardt nonlinear least square algorithm, expression of the model was used to fit the repeated loading permanent deformation (RLPD) test data of asphalt mixture with basalt fiber content of 0.2%, 0.3%, 0.4%, 0.5% and without fiber respectively, and thus the parameters of the model were determined. Thereafter, by using the model expression and material parameters, the flow number (FN) and FN index were calculated, and the results were compared with the dynamic modulus and wheel tracking test data at high temperature to study permanent deformation characteristics. The results show that the model can well describe the three-stage permanent deformation characteristics of asphalt mixture with different basalt fiber content under repeated load; the addition of basalt fiber enhanced the high temperature performance of the mixture significantly, and the optimal fiber content was 0.3%; the FN and FN index calculated by the model were strongly correlated with the dynamic modulus and dynamic stability data, which further verified the accuracy of the model. Finally, the correlation between the fractional parameter and the FN or FN index was compared, and the correlation between the fractional parameter and the high temperature performance of asphalt mixture was also briefly discussed.
Key words:  road engineering    nonlinear viscoelastoplastic model    fractional dashpot    basalt fiber asphalt mixture    permanent deformation
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  U416.217  
基金资助: 国家自然科学基金面上项目(12072308;11802259);湖南省高层次人才聚集工程项目(2019RS1059)
通讯作者:  luowenbo@ccsu.edu.cn   
作者简介:  张永军,湘潭大学博士生,2013年毕业于湘潭大学,获得土木工程专业工学学士学位。2014年9月开始在湘潭大学土木工程与力学学院硕博连读攻读博士学位至今,主要研究方向:路面材料黏弹性力学理论和新型路面材料研发。
罗文波,长沙学院二级教授、湘潭大学博士研究生导师、岩土力学与工程安全湖南省重点实验室主任。1995年获湘潭大学流变学硕士学位,2001年在华中科技大学固体力学专业获得博士学位。2008年入选教育部新世纪优秀人才支持计划。2004—2007年在加拿大魁北克大学和日本神户大学任访问教授和JSPS研究员。现兼任中国力学学会理事、中国力学学会流变学专业委员会和波纹管及管道力学专业委员会副主任、中国腐蚀与防护学会高分子管道和容器专业委员会专家委员、湖南省力学学会副理事长和湖南省岩石力学与工程学会副理事长。主要从事流变学和固体力学研究,主持国家自然科学基金项目6项和部省级项目10余项,出版《黏弹性理论与应用》专著,授权国家发明专利5项,发表学术论文百余篇。
引用本文:    
张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
ZHANG Yongjun, LUO Wenbo. Fractional Viscoelastoplastic Model for Permanent Deformation of Basalt Fiber Modified Asphalt Mixture Under Repeated Loading. Materials Reports, 2022, 36(9): 21020108-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020108  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020108
1 Sha Q L. Study on expressway bitumen pavement initial damage and preventing, China Communications Press,China,2001,pp.105(in Chinese).
沙庆林. 高速公路沥青路面早期破坏现象及预防, 人民交通出版社, 2001, pp. 105.
2 Ma L J, Yang C F. Journal of Functional Materials, 2019, 50(1), 1164(in Chinese).
马立杰, 杨春风. 功能材料, 2019, 50(1), 1164.
3 Wang H. Highway, 2016, 61(3), 160(in Chinese).
王宏. 公路, 2016, 61(3), 160.
4 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 5(in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 5.
5 Fang M W, Wang D, Yin L, et al. Highway,2019,64(5),23(in Chinese).
方明伟, 王丹, 殷玲, 等. 公路, 2019, 64(5), 23.
6 Zheng Y X, Cai Y C, Zhang Y M. Advanced Materials Research, 2011, 266, 175.
7 Qin X, Shen A, Guo Y, et al. Construction and Building Materials, 2018, 159, 508.
8 Guo Y C, Li Z N, Shen A Q, et al. Journal of Building Materials, 2018, 21(1), 47(in Chinese).
郭寅川, 李震南, 申爱琴, 等. 建筑材料学报, 2018, 21(1), 47.
9 Wu S P, Ye Q S, Liu Z F. Journal of Highway and Transportation Research and Development, 2008, 25(11), 20(in Chinese).
吴少鹏, 叶群山, 刘至飞. 公路交通科技, 2008, 25(11), 20.
10 Monosmith C L, Alexander R L, Secor K E. Proceedings of the Association of Asphalt Paving Technologists, 1966, 35, 400.
11 Nguyen Q T, Benedetto H D, Sauzéat C. Materials and Structures, 2015, 48(7), 2339.
12 Zhang H, Hao P W, Ling T Q, et al. Materials Reports B: Research Papers, 2018, 32(3), 987(in Chinese).
张航, 郝培文, 凌天清, 等. 材料导报:研究篇, 2018, 32(3), 987.
13 Dong N, Ni F, Li S, et al. Construction and Building Materials, 2018, 180, 425.
14 Zhang J, Alvarez A E, Lee S I, et al. Construction and Building Mate-rials, 2013, 44, 391.
15 Zhang J P, Li Y W, Pei J Z, et al. Journal of Tongji University: Natural Science, 2012, 40(10), 1522(in Chinese).
张久鹏,李彦伟,裴建中,等.同济大学学报: 自然科学版, 2012, 40(10), 1522.
16 Zhai X J, Zhao Y, Zhang Q Y. Highway Engineering, 2016, 41(6), 233(in Chinese).
翟晓静, 赵毅, 张庆宇. 公路工程, 2016, 41(6), 233.
17 Darabi M K, Huang C W, Bazzaz M, et al. Construction and Building Materials, 2019, 216, 648.
18 Yang T Q, Luo W B, Xu P, et al. Theory of viscoelasticity and its applications, Science Press, China, 2004, pp. 24(in Chinese).
杨挺青,罗文波,徐平,等. 黏弹性理论与应用, 科学出版社, 2004, pp.24.
19 González J M, Canet J M, Oller S, et al. Computational Materials Science, 2007, 38(4), 543.
20 Zhang Y Q, Huang X M. Journal of Highway and Transportation Research and Development, 2008, 25(4), 1(in Chinese).
张裕卿, 黄晓明.公路交通科技, 2008, 25(4), 1.
21 Kiryakova V, Al-Sauabi B. Computers and Mathematics with Applications, 1999, 37(1), 75.
22 Rabotnov Y N. Creep problems in structural members, North-Holland Publishing Company, Netherlands, 1969, pp. 163.
23 Leckie F A, Hayhurst D R. Acta Metallurgica, 1977, 25, 1059.
24 Zhang J P, Huang X M. Journal of Southeast University (Natural Science Edition), 2010, 40(1), 185(in Chinese).
张久鹏, 黄晓明. 东南大学学报(自然科学版), 2010, 40(1), 185.
25 JTG F40-2004公路沥青路面施工技术规范,人民交通出版社, 2004.
26 JTG E20-2011公路工程沥青及沥青混合料试验规程,人民交通出版社, 2011.
27 Zhang J, Alvarez A, Walubita L, et al. Journal of the South African Institution of Civil Engineering, 2013, 55(3), 103.
28 AASHTO Designation: T 342-11, Standard method of test for determining dynamic modulus of hot mix asphalt (HMA), AASHTO, USA, 2011.
29 Yang X L, Shen A Q, Guo Y C, et al. Materials Reports A:Review Papers, 2018, 32(7), 2230(in Chinese).
杨小龙,申爱琴,郭寅川,等. 材料导报:综述篇,2018,32(7),2230.
[1] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[2] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[3] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[4] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[5] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[6] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[7] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[8] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[9] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[10] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[11] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[12] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[13] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[14] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[15] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed