Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10080-10087    https://doi.org/10.11896/cldb.20030166
  无机非金属及其复合材料 |
PR.M/胶粉复合改性沥青流变及微观特性研究
郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯
大连海事大学交通运输工程学院,大连 116026
Rheological and Microscopic Properties of PR.M/Crumb Rubber Composite Modified Asphalt
GUO Naisheng, YU Chunhui, WANG Lin, JIN Xin, WEN Yankai
College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
下载:  全 文 ( PDF ) ( 4325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善基质沥青的高、低温性能,采用胶粉和高模量剂PR.M对其进行复配改性。利用动态剪切流变和弯曲梁流变试验评价了PR.M/胶粉复合改性沥青的高、低温流变性能;通过多应力重复蠕变(MSCR)试验分析了PR.M/胶粉复合改性沥青的抗永久性变形能力;借助热重分析试验获得了PR.M/胶粉复合改性沥青的热分解温度;应用傅里叶变换红外光谱试验探究了PR.M/胶粉复合改性沥青制备过程中可能发生的化学反应;利用荧光显微试验分析了PR.M/胶粉复合改性沥青中胶粉及PR.M的作用机理。结果表明:PR.M对基质沥青的高温性能改善效果优于胶粉;胶粉可以改善基质沥青的低温性能;胶粉和PR.M均可以提高基质沥青的抗永久变形能力;PR.M/胶粉复合改性沥青的热分解温度与PR.M、胶粉的掺量有关,PR.M和胶粉的掺量越大,复合改性沥青的热分解温度越高;PR.M/胶粉复合改性沥青制备过程以物理共混为主,伴随化学反应的发生;胶粉溶胀改善了基质沥青的低温性能,PR.M溶胀改善了基质沥青的高温性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭乃胜
俞春晖
王淋
金鑫
温彦凯
关键词:  流变性能  微观特性  PR.M/胶粉  永久变形  作用机理    
Abstract: In order to improve the high and low temperature performance of base asphalt, the PR-Module/crumb rubber composite modified asphalt was produced with different contents of crumb rubber, PR-Module, respectively. The rheological properties of PR-Module/crumb rubber compo-site modified asphalt were investigated by using the dynamic shear rheometer and bending beam rheometer tests, and the multiple stress creep recovery (MSCR) test was performed to evaluate the resistance to permanent deformation of PR-Module/crumb rubber composite modified asphalt. The thermogravimetric analysis test was employed to obtain the thermal decomposition temperature of PR-Module/crumb rubber composite modified asphalt. The Fourier transform infrared spectroscopy test was conducted to explore the chemical reaction during the preparation of PR-Module/crumb rubber composite modified asphalt. The reaction mechanism of PR-Module/crumb rubber composite modified asphalt was investigated by using fluorescence microscopy. The results showed: the PR-Module exhibited a better high temperature performance than the crumb rubber, the addition of crumb rubber can improve the low temperature performance of base asphalt. Both the crumb rubber and the PR-Module can increase the resistance to permanent deformation of base asphalt. The thermal decomposition temperature of the PR-Module/crumb rubber composite modified asphalt was related to the dosage of PR-Module and crumb rubber, the thermal decomposition temperature increased with an increase in the dosage of PR-Module and crumb rubber. The Fourier transform infrared spectroscopy test showed that a chemical reaction occurred in the preparation process of PR-Module/crumb rubber composite modified asphalt. The swelling of crumb rubber can improve the low temperature performance of base asphalt, and the swelling of PR-Module can enhance the high temperature performance of base asphalt.
Key words:  rheological properties    microscopic properties    PR-Module/crumb rubber    permanent deformation    reaction mechanism
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);辽宁省自然科学基金(20180550173);大连科技创新基金项目(2020JJ26SN062)
通讯作者:  naishengguo@126.com   
作者简介:  郭乃胜,教授,博士研究生导师。2009—2012年在哈尔滨工业大学进行博士后研究工作。2013—2014年在美国密歇根理工大学作访问学者。现任大连海事大学交通运输工程学院教授。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文50余篇,其中SCI、EI检索30余篇。
引用本文:    
郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
GUO Naisheng, YU Chunhui, WANG Lin, JIN Xin, WEN Yankai. Rheological and Microscopic Properties of PR.M/Crumb Rubber Composite Modified Asphalt. Materials Reports, 2021, 35(10): 10080-10087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030166  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10080
1 Chen L F, Guan Y S. Technology of Highway and Transport, 2014(3), 14(in Chinese).
陈李峰, 关永胜. 公路交通技术, 2014(3), 14.
2 Silvino D C, Luís P S. Journal of Transportation Engineering, 2006, 132(5),394.
3 Liu S T, Cao W D, Li X J, et al.Construction and Building Materials, 2018, 176, 549.
4 Zheng M L, Li P, Yang J, et al.Construction and Building Materials, 2019, 206, 655.
5 Taher Baghaee Moghaddam, Hassan Baaj. Construction and Building Materials, 2018, 193, 142.
6 Han G, Cristian S C, Hussain U B. Construction and Building Material, 2013, 44(3), 207.
7 Yang W T. Research on the technical performance with high modulus asphalt concrete. Master's Thesis, Hebei University of Technology, China, 2010 (in Chinese).
杨维涛. 高模量沥青混凝土技术性能研究. 硕士学位论文, 河北工业大学, 2010.
8 Zou X L, Sha A M,Jiang W, et al. In: Conference Record of the 2014 Advances in Transportation. Kunming, 2014, pp. 505.
9 Han L L, Zheng M L, Wang C T, et al. In: Conference Record of the 2016 Advances of Transportation: Infrastructure and Materials. Xi'an, 2016, pp. 328.
10 Li P, Zheng M L, Wang F, et al. Advances in Materials Science and Engineering, 2017, DOI: 10.1155/2017/7236153.
11 Zhao Y, Liang N X, Qin H, et al. Journal of Chang'an University (Natural Science Edition), 2015, 35(4), 32 (in Chinese).
赵毅, 梁乃兴, 秦旻, 等. 长沙大学学报(自然科学版), 2015, 35(4), 32.
12 Zhang C. PR.M high modulus asphalt mixture in highway application research. Master's Thesis, Central South University of Forestry and Techno-logy, China, 2016 (in Chinese).
张晨. PR-M高模量沥青混合料在公路中的应用研究. 硕士学位论文, 中南林业科技大学, 2016.
13 Wang C. PR MODULE high modulus asphalt concrete pavement perfor-mance and application technology. Master's Thesis, Inner Mongolia University of Technology, China, 2014 (in Chinese).
王超. PR MODULE高模量沥青混合料路用性能及其应用技术研究. 硕士学位论文, 内蒙古工业大学, 2014.
14 Wu C Y, Ren Z S.Journal of Wuhan University, 2016, 49(3), 411 (in Chinese).
吴朝阳, 任仲山. 武汉大学学报 (工学版), 2016, 49(3), 411.
15 Yu Z G. Highway Engineering, 2017, 42(2), 272 (in Chinese).
余志刚. 公路工程, 2017, 42(2), 272.
16 Cheng M.Highway Engineering, 2016, 41(5), 46 (in Chinese).
程梅. 公路工程, 2016, 41(5), 46.
17 Yang X W, Liu K, Yang D T. Journal of China and Foreign Highway, 2008, 280(6), 203 (in Chinese).
杨锡武, 刘克, 杨大田. 中外公路, 2008, 280(6), 203.
18 Cristina Fuentes-Audén, Juan Andrés Sandoval, Abel Jerez, et al. Polymer Testing, 2008, 27(8), 1005.
19 Li D C, Wu X H.Petroleum Asphalt, 2003, 17(3), 39 (in Chinese).
李德超, 武贤慧. 石油沥青, 2003, 17(3), 39.
20 Singh B, Lokesh Kumar, Gupta M, et al. Journal of Applied Polymer Science. 2013, 127(1), 67.
21 Xu O M, Zhang H, Cao Z F, et al.Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(5), 52 (in Chinese).
徐鸥明, 张鸿, 曹志飞, 等. 重庆交通大学学报(自然科学版), 2019, 38(5), 52.
22 Fu Y. Study on application of waste rubber powder modified asphalt mixture in seasonal frozen zone. Master's Thesis, Jilin University, China, 2018 (in Chinese).
付裕. 季冻区废胶粉改性沥青混合料应用研究. 硕士学位论文, 吉林大学, 2018.
23 Wang H, You Z, Mills-Beale J, et al.Construction and Building Mate-rials, 2012, 26(1), 583.
24 Ao Q W, Tian Y Y.Technology of Highway and Transport, 2016, 32(3), 35 (in Chinese).
敖清文, 田永娅. 公路交通技术, 2016, 32(3), 35.
25 Liu S P, Huang W D, Ji S Z. Highway Engineering, 2016, 41(1), 28 (in Chinese).
刘少鹏, 黄卫东, 纪淑贞. 公路工程, 2016, 41(1), 28.
26 Yang C. Analysis the mechanism of waste rubber powder modified asphalt and influence factors effect. Master's Thesis, Jilin University, China, 2018 (in Chinese).
杨淳.废胶粉改性沥青改性机理及机理影响因素效应分析. 硕士学位论文, 吉林大学, 2018.
27 Yang G. Study on the performance of industrialized rubber/SBS composite modified asphalt(CR/SBSCMA)and asphalt mixture in seasonal freezing regions. Master's Thesis, Chang'an University, China, 2016 (in Chinese).
杨光. 季冻区工厂化废胶粉/SBS复合改性沥青(CR/SBSCMA)及混合料性能研究. 硕士学位论文, 长安大学, 2016.
28 Liu Li.Highway Engineering, 2016, 41(4), 124 (in Chinese).
刘丽. 公路工程, 2016, 41(4), 124.
29 Wang C, Wang H.Construction and Building Materials, 2017, 155, 26.
30 He Q P. Preparation of PE and desulfurized rubber compound modified asphalt and analysis of ITS modification mechanism. Master's Thesis, Chongqing Jiaotong University, China, 2018 (in Chinese).
何青蓬. PE-脱硫橡胶复合改性沥青制备及改性机理分析. 硕士学位论文, 重庆交通大学, 2018.
31 Jiang J Y, Yang Y. Architectural Engineering Technology and Design, 2018(15),190(in Chinese).
蒋佳莹, 杨洋. 建筑工程技术与设计, 2018(15),190 (in Chinese).
32 Lu T F, Ye Q S.Western China Communication Science and Technology, 2015(12),15 (in Chinese).
陆腾飞, 叶群山. 西部交通科技, 2015(12),15.
33 Zhang Z Q.Journal of Chongqing Jiaotong Institute, 2000, 19(4), 30 (in Chinese).
张争奇. 重庆交通学院学报, 2000, 19(4), 30.
34 Zhang J S, Wang W J, Zhao H W, et al. Journal of Shenyang Jianzhu University (Social Science), 2007, 23(2), 267 (in Chinese).
张巨松, 王文军, 赵宏伟, 等. 沈阳建筑大学学报(自然科学版), 2007, 23(2), 267.
[1] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[2] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[3] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[4] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[5] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[6] 翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
[7] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[8] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[9] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[10] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[11] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[12] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[13] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[14] 张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
[15] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed