Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18093-18097    https://doi.org/10.11896/cldb.19080099
  金属与金属基复合材料 |
AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究
周立玉, 李秀兰, 王宣, 曾洪亮, 余杰
四川轻化工大学机械工程学院,宜宾 644000
Study on the Diffusion Layer Microstructure Evolution Process of AZ31 Magnesium Alloy by Solid Diffusion La2O3+Zn
ZHOU Liyu, LI Xiulan, WANG Xuan, ZENG Hongliang, YU Jie
School of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
下载:  全 文 ( PDF ) ( 5366KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过在AZ31镁合金表面固态扩渗La2O3+Zn,研究扩渗层的组织演化特征,揭示La2O3在扩渗过程中的作用机理。对AZ31镁合金在390℃下进行4 h的表面固态扩渗La2O3+Zn粉末,La2O3在扩渗剂中的质量分数分别为0.0%、0.2%、0.4%、0.6%。通过光学显微镜、扫描电镜和X射线衍射仪,研究随La2O3含量的变化,渗层的形貌特征和物相组成的变化规律。随扩渗剂中La2O3含量的增加,渗层组织发生了明显的变化。当扩渗剂中无La2O3时,AZ31镁合金表面无渗层出现;当扩渗剂中La2O3的质量分数为0.2%时,在AZ31镁合金表面可观察到有明显的渗层,渗层主要由Mg0.97Zn0.03+MgZn+Mg2Zn3+MgZn2组成。当La2O3在扩渗剂中的质量分数超过0.4%以后,AZ31镁合金基体消失,渗层组织中的物相不再发生变化,Mg2Zn11+Mg0.97Zn0.03+MgZn+Mg2Zn3+MgZn2主要存在于渗层中。随扩渗剂中La2O3含量的增加,渗层组织变得粗大,Mg0.97-Zn0.03和Mg-Zn化合物分别减少和增加,渗层中主要物相为MgZn。建立了AZ31镁合金表面固态扩渗La2O3+Zn粉末的扩散物理模型,扩渗过程中主要是Zn原子的扩散,Zn在AZ31镁合金表面的扩散机制为空位扩散。分析了扩渗剂中不同含量的La2O3渗层的组织演化和作用机理,发现La2O3在扩渗过程中起到了催化剂的作用,增强了Zn原子的活动能力,在相同的外界扩渗条件下,La2O3促进了Zn与Mg发生反应从而扩散形成不同的Mg-Zn化合物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周立玉
李秀兰
王宣
曾洪亮
余杰
关键词:  AZ31  固态扩渗  La2O3  Zn  作用机理  物理模型    
Abstract: This work aims to study the microstructural evolution of the diffusion layer and the function mechanism of La2O3 during the solid diffusion La2O3+Zn on AZ31 magnesium alloy surface. Surface solid diffusion of La2O3+Zn powder on AZ31 magnesium alloy was carried out at 390℃+4 h, the mass fractions of La2O3 in the diffusion agent was 0.0wt%, 0.2wt%, 0.4wt%, and 0.6wt%, respectively. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to investigate the morphology characteristic of diffusion layer and the transformation law of phase composition with the change of La2O3 concentration. With the increase of La2O3 concentration in the diffusion agent, the microstructure of the diffusion layer was changed obviously. When there is no La2O3 in the diffusion agent, no diffusion layer appears on the surface of AZ31 magnesium alloy. When La2O3 addition was 0.2wt%, the apparent diffusion layer was observed on AZ31 magnesium alloy surface,the diffusion layer was mainly consists of Mg0.97Zn0.03+MgZn+Mg2Zn3+MgZn2. AZ31 magnesium alloy matrix was eliminated when La2O3 addition exceeded 0.4wt% and the amount of phase in the layer structure no longer changes, Mg2Zn11+Mg0.97Zn0.03+MgZn+Mg2Zn3+MgZn2 mostly existed in the diffusion layer. With the increasing La2O3 content in the diffusion agent, the diffusion layer microstructure becomes coarse, the amount of Mg0.97Zn0.03 and Mg-Zn compounds decreased and increased, respectively, the main phase in diffusion layer was MgZn. The physical diffusion model during solid diffusion La2O3+Zn on AZ31 magnesium alloy surface was built. The diffusion process is mainly the diffusion of Zn atoms, the diffusion mechanism of Zn on AZ31 magnesium alloy surface was vacancy diffusion. The microstructure evolution and function mechanism were analyzed with the different La2O3 addition in the diffusion agent, La2O3 acted as a catalyst during diffusion processing and improved the Zn diffusion activity ability. Under the same external diffusion conditions, La2O3 promoted the reaction diffusion of Zn and Mg and formed different Mg-Zn compounds.
Key words:  AZ31    solid diffusion    La2O3    Zn    function mechanism    physics model
               出版日期:  2020-09-25      发布日期:  2020-09-12
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金青年科学基金项目(51701133);四川省教育厅重点项目(18ZA0348);四川理工学院人才引进项目(2017RCL07); 过程装备与控制工程四川省高校重点实验室项目(GK201911);钒钛资源综合利用四川省重点实验室项目(2018FTSZ25)
通讯作者:  1853123510@qq.com   
作者简介:  周立玉,2018年6月毕业于四川轻化工大学,获得工学学士学位。自2018年9月在四川轻化工大学攻读硕士学位,主要从事金属基复合材料的制备以及金属材料表面改性的研究。
李秀兰,硕士研究生导师,副教授,主要在四川轻化工大学从事教学和科研工作。研究方向主要有:耐磨材料、金属材料表面改性和模具材料。在国内外期刊发表论文20余篇,主持国家级项目、四川省教育厅和重点实验室项目共计8项。
引用本文:    
周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
ZHOU Liyu, LI Xiulan, WANG Xuan, ZENG Hongliang, YU Jie. Study on the Diffusion Layer Microstructure Evolution Process of AZ31 Magnesium Alloy by Solid Diffusion La2O3+Zn. Materials Reports, 2020, 34(18): 18093-18097.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080099  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18093
1 Tian Z J, Wei Y H.Materials Reports, 2011, 25(s2), 490(in Chinese).
田正军, 卫英慧.材料导报, 2011, 25(专辑18), 490.
2 Zhong L X, Yang M B, Yuan S, et al.Journal of Chongqing University of Technology(Natural Science), 2019, 33(8), 90(in Chinese).
钟罗喜, 杨明波, 袁淑, 等. 重庆理工大学学报(自然科学), 2019, 33(8), 90.
3 Chen H, Guo Y X, Gong Y, et al.Surface Technology, 2017, 46(5), 34(in Chinese).
陈宏, 郭亚欣, 宫月, 等. 表面技术, 2017, 46(5), 34.
4 Jung K H, Kim Y B, Lee G A, et al.Advanced Manufacturing Processes, 2014, 29(2), 115.
5 Wang J F, Zhao L, Hu Y B, et al.Materials Reports, 2008, 22(7), 103(in Chinese).
王敬丰, 赵亮, 胡耀波, 等. 材料导报, 2008, 22(7), 103.
6 Lin R, Liu Z H, Wang F, et al.Surface Technology, 2016, 45(4), 124(in Chinese).
林锐, 刘朝辉, 王飞, 等. 表面技术, 2016, 45(4), 124.
7 Zhang T J,Li X G. Materials Reports, 2002, 16(7), 11(in Chinese).
张同俊,李星国. 材料导报, 2002, 16(7), 11.
8 Arruebarrena G, Hurtado I, VaInoLa J, et al. Advanced Engineering Materials, 2007, 9(9), 751.
9 Cui Z Q, Wang W X, Wu H L, et al.Chinese Journal of Lasers, 2011, 38(6), 169.
10 Lv Y Y, Zhang L F.Advanced Materials Research, 2015, 1120, 1078.
11 Gao F Y, Zhao M, Li T T, et al. Surface Technology, 2012, 41(4), 118(in Chinese).
高福勇, 赵明, 李婷婷, 等.表面技术, 2012, 41(4), 118.
12 Chen N Y, Qiang X F, Shen J J, et al.Hot Working Technology, 2018, 47(18), 134(in Chinese).
陈宁宇, 强新发, 沈佳杰, 等. 热加工工艺, 2018, 47(18), 134.
13 Wang L, Fu W, Chen L.Journal of the Chinese Ceramic Society, 2012, 40(12), 1802(in Chinese).
王丽, 付文, 陈砺. 硅酸盐学报, 2012, 40(12), 1802.
14 Xu H, Zhang C B, Wang Z K, et al.Surface Technology, 2017, 46(9), 87(in Chinese).
宿辉, 张春波, 王作凯, 等. 表面技术, 2017, 46(9), 87.
15 Li S P, Mo M L.Foundry Technology, 2016, 37(2), 249(in Chinese).
李穗平, 莫明立. 铸造技术, 2016, 37(2), 249.
16 Zhang Z W. Hot Working Technology, 2018, 47(8), 107(in Chinese).
张智文. 热加工工艺, 2018, 47(8), 107.
17 Chen Z Q. Study on processing and microstructure of aluminum alloy coating on the surface of magnesium alloy by hot dipping. Master's Thesis, Chongqing University, China, 2013(in Chinese).
陈祖权. 镁合金表面热浸镀铝合金工艺与镀层组织研究. 硕士学位论文, 重庆大学, 2013.
18 Liu W X, Li X L, Zhou X J.Surface Technology, 2018, 47(8), 36(in Chinese).
刘纹序, 李秀兰, 周新军.表面技术, 2018, 47(8), 36.
19 Liu B S. Influence of die-casting technology on conversion coating and organic coating and study on the metal coating spraying on AZ91D magne-sium alloy. Ph.D. Thesis, Taiyuan University of Technology, China, 2014(in Chinese).
刘宝胜. AZ91D镁合金压铸工艺对表面处理的影响及表面喷涂金属涂层研究. 博士学位论文, 太原理工大学, 2014.
20 Wu K, Wang Y Q, Zheng M Y.Materials Science and Engineering A, 2007, 447(1-2), 227.
21 Xu C J, Zhang J X, Tian J, et al.Transactions of Materials and Heat Treatment, 2015, 36(7), 205(in Chinese).
徐春杰, 张金皛, 田军, 等. 材料热处理学报, 2015, 36(7), 205.
22 Li N. Research on solid diffusion treatment on the surface of AZ91 magnesium alloy. Master's Thesis, Northwestern Polytechnical University, China, 2007(in Chinese).
李娜. AZ91镁合金表面固态扩渗的研究. 硕士学位论文, 西北工业大学, 2007.
23 Ma Y P, Yang L, Li X L.Corrosion Science and Protection Technology, 2009, 21(4), 374(in Chinese).
马幼平, 杨蕾, 李秀兰. 腐蚀科学与防护技术, 2009, 21(4), 374.
24 Zhao L M, Zhang Z D.Scripta Materialia, 2008, 58(4), 283.
25 Ma Y P, Xu K W, Pan X D, et al.Rare Metal Materials and Enginee-ring, 2005, 34(3), 433(in Chinese).
马幼平, 徐可为, 潘希德, 等. 稀有金属材料与工程, 2005, 34(3), 433.
26 Han B J, Gu D D, He Q, et al.Transactions of Materials and Heat Treatment, 2016, 37(8), 157(in Chinese).
韩宝军, 古东懂, 何琼, 等.材料热处理学报, 2016, 37(8), 157.
27 Lin W G, Yao J, Mao G L.Light Alloy Fabrication Technology, 2009, 37(6), 46(in Chinese).
林文光, 姚军, 毛广雷.轻合金加工技术, 2009, 37(6), 46.
28 Yu B, Guo Y L, Li J T, et al.Transactions of Materials and Heat Treatment, 2014, 35(4), 178(in Chinese).
余彬,郭玉玲,李景潼, 等. 材料热处理学报, 2014, 35(4), 178.
29 Liu C M, Zhu X R, Zhou H T.Magnesium alloy phase atlas, Central South University Press, China, 2006(in Chinese).
刘楚明, 朱秀荣, 周海涛.镁合金相图集, 中南大学出版社, 2006.
[1] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[2] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[3] 王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
[4] 晁代义, 李昌龙, 赵佳蕾, 孙有政, 赵志国, 霍艳, 吕正风. 大尺寸Al-Zn-Mg-Cu铝合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 338-340.
[5] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[6] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[7] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[8] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[9] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[10] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[11] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[12] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[13] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[14] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[15] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed