Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18056-18059    https://doi.org/10.11896/cldb.19070127
  机非金属及其复合材料 |
锂渣细度对掺减水剂的水泥浆体流变性能的影响
翟莹1, 苗苗1,2, 肖立鲜1
1 重庆大学材料科学与工程学院,重庆 400045
2 山东农业大学水利土木学院,泰安 271018
Effect of Lithium Slag Fineness on Rheological Properties of Cement Paste Mixed with Superplasticizers
ZHAI Ying1, MIAO Miao1,2, XIAO Lixian1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045,China
2 College of Hydraulic and Civil Engineering, Shandong Agriculture University, Tai'an 271018, China
下载:  全 文 ( PDF ) ( 2256KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着锂盐工业的迅猛发展,锂渣堆存量逐年增加,将其磨细后作为矿物掺合料进行资源化利用可有效解决这一问题。本工作采用流动度及经时损失、流变参数、Zeta电位等测试手段表征了锂渣细度对掺减水剂的水泥浆体流变性能的影响。结果表明:锂渣掺量为15%时,体系初始屈服应力和塑性黏度均随锂渣比表面积的增大而增大,宏观表现为体系的初始流动度随锂渣比表面积的增大而减小;掺锂渣体系的流动度60 min后开始下降,且下降程度随锂渣比表面积的增大而增大,相比于纯水泥体系,掺入锂渣后浆体流动度经时损失有大幅改善。掺入锂渣后体系初始Zeta电位下降明显,5~60 min降幅逐渐变小,60 min后趋于稳定。对于不同细度锂渣,体系Zeta电位随着比表面积的增大而降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟莹
苗苗
肖立鲜
关键词:  锂渣细度  流变性能  Zeta电位  流动度损失    
Abstract: With the rapid development of lithium salt industry, the storage of lithium slag has been increasing year by year. Using the ground lithium slag as a mineral admixture in concrete can effectively solve the stock problem. In this study, fluidity and fluidity loss over time, rheological parameters, Zeta potential were measured to investigate the effect of lithium slag fineness on the rheological properties of cement paste with superplasticizers. The results showed that when the content of lithium slag was constant (i.e., 15%), the initial yield stress and plastic viscosity of the system increased with the increase of specific surface area of lithium slag, and the initial fluidity of the system decreased with the increase of specific surface area of lithium slag. The fluidities of all the systems with and without lithium slag began to decrease after 60 minutes, and the fluidity loss grew with the increase of the specific surface area of lithium slag. Compared to the pure cement system, fluidity losses of three systems with lithium slag were much smaller. The initial Zeta potential of systems with lithium slag decreased obviously, and the decline diminished gradually within 60 minutes and tended to be stable after 60 minutes. The Zeta potential of systems incorporating lithium slags with different finenesses decreased with the increase of specific surface area of lithium slag.
Key words:  lithium slag fineness    rheological properties    Zeta potential    fluidity loss
                    发布日期:  2020-09-12
ZTFLH:  TU528.04  
基金资助: 国家自然科学基金(51808072);中央高校基本科研业务费(CDJZR13130029)
通讯作者:  miao_thu@126.com   
作者简介:  翟莹,重庆大学材料科学与工程学院硕士研究生,主要研究内容为纳米膨胀剂、水泥与聚羧酸减水剂的相容性。
苗苗,副教授,2012年毕业于清华大学,获得工学博士学位,2012—2019年在重庆大学工作,现就职山东农业大学水利土木学院,主要研究领域为复合胶凝材料体系与减水剂的相容性、高性能混凝土抗裂技术、工业废渣的建材资源化利用等。
引用本文:    
翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
ZHAI Ying, MIAO Miao, XIAO Lixian. Effect of Lithium Slag Fineness on Rheological Properties of Cement Paste Mixed with Superplasticizers. Materials Reports, 2020, 34(18): 18056-18059.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070127  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18056
1 Zhai M Y, Zhao J H, Wang D M.Materials Reports A:Review Papers, 2017, 31(5), 139(in Chinese).
翟梦怡, 赵计辉, 王栋民.材料导报:综述篇, 2017, 31(5), 139.
2 Mao Y Z. Study on pozzolanic activity of lithium slag from lithium mica in Yichun and its effect on the performance of cement and concrete.Master's Thesis, Nanchang University, China, 2017(in Chinese).
毛意中. 宜春锂云母提锂渣的火山灰活性及其对水泥混凝土性能的影响研究.硕士学位论文, 南昌大学, 2017.
3 Wen Y, Song Y F, Ablula K H, et al. Concrete, 2011, 28(10), 58(in Chinese).
温勇, 宋亚峰, 阿不拉·坎杰, 等. 混凝土, 2011, 28(10), 58.
4 Xu K C, Bi L P, Chen M C. Bulletin of the Chinese Ceramic Society, 2016, 35(10), 3373(in Chinese).
许开成, 毕丽苹, 陈梦成. 硅酸盐通报, 2016, 35(10), 3373.
5 Xu F L, Li Y Q, Ye H Y. China Concrete and Cement Products, 2012(10), 20(in Chinese).
徐芬莲, 李预奇, 叶海艳.混凝土与水泥制品, 2012(10), 20.
6 Zhang L, Lv S Z, Liu Y, et al. Journal of Wuhan University of Technology, 2015, 37(3), 23(in Chinese).
张磊, 吕淑珍, 刘勇, 等.武汉理工大学学报, 2015, 37 (3), 23.
7 Lu J Y, Liu J P, Shang Y, et al. Concrete, 2009(2), 66(in Chinese).
陆加越, 刘加平, 尚燕, 等.混凝土, 2009(2), 66.
8 Olga Burgos-Montes, Marta Palacios, Patricia Rivilla, et al. Construction and Building Materials, 31(6), 300.
9 Xu F L, Zhao W Q, Lu J L, et al. Materials Reports, 2013, 27(z2), 311(in Chinese).
徐芬莲, 赵晚群, 卢佳林, 等.材料导报, 2013, 27(z2), 311.
10 Miao M, Xue K W, Miao F, et al. Journal of Hunan University (Natural Sciences), 2018, 45(12), 95(in Chinese).
苗苗, 雪凯旺, 苗芳, 等. 湖南大学学报(自然科学版), 2018, 45(12), 95.
11 Yang J, Li Y.Industrial Construction, 2003(6), 55(in Chinese).
杨静, 李滢.工业建筑, 2003(6), 55.
12 Wang Z M. Interfacial chemistry and rheological properties of “cement-water-high efficiency water reducer” system.Ph.D. Thesis, Beijing University of Technology, China, 2006(in Chinese).
王子明. “水泥-水-高效减水剂”系统的界面化学现象与流变性能.博士学位论文, 北京工业大学, 2006.
13 Jiang N. Effect of sulfate on adsorption-dispersion behavior of polycarboxylate water reducer.Master's Thesis, Chongqing University, China, 2013(in Chinese).
江楠. 硫酸盐对聚羧酸减水剂吸附-分散行为的影响研究. 硕士学位论文, 重庆大学, 2013.
14 Lawrence P, Cyr M, Ringot E.Cement and Concrete Research, 2003, 33(12), 1939.
15 Sant G, Kumar A, Patapy C, et al.Cement and Concrete Research, 2012, 42(11), 1447.
16 Dai Z D. Mechanism of adsorption and rheological regulation of different cementitious materials by water reducing agent.Master's Thesis, Wuhan University of Technology, China, 2014(in Chinese).
代柱端. 减水剂对不同胶凝材料的吸附及流变性调控机理.硕士学位论文, 武汉理工大学, 2014.
17 Yamada K. Cement and Concrete Research, 2000, 30(2), 197.
18 Saak A, Jennings H, Shah S. Cement and Concrete Research, 2004,34, 363.
19 Zhao J F. Study on adsorption mechanism of superplasticizer by single mineral of cement.Master's Thesis, Beijing University of Technology, China, 2005(in Chinese).
赵军锋. 水泥单矿物对超塑化剂吸附机理的研究. 硕士学位论文, 北京工业大学, 2005.
20 Liu J P, Yu Y H, Ran Q P, et al.Journal of Building Materials, 2012, 15(5), 596(in Chinese).
刘加平, 俞寅辉, 冉千平, 等.建筑材料学报, 2012, 15(5), 596.
21 Chen X X, Ding X C, Liao J Q, et al.Science and Technology Innovation Review, 2014, 11(7), 5(in Chinese).
陈新秀, 丁晓川, 廖佳庆, 等.科技创新导报, 2014, 11(7), 5.
22 Mollah M Y A, Adams W J, Schennach R, et al. Advances in Cement Research, 2000, 12(4), 153.
23 Shang Y,Miao C W, Liu J P, et al. Journal of Building Materials, 2010, 13(4), 492(in Chinese).
尚燕, 缪昌文, 刘加平, 等.建筑材料学报, 2010, 13(4), 492.
24 Yoshioka K, Tazawa E I, Kawai K, et al.Cement and Concrete Research, 2002, 32(10), 1507.
[1] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[2] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[3] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[4] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[5] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[6] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[7] 张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
[8] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[9] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[10] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed