Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 347-351    https://doi.org/10.11896/cldb.201902027
  高分子与聚合物基复合材料 |
PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能
戴红1,2, 刘跃军1,2, 崔玲娜2, 李秋艾2
1 厦门理工学院聚合物加工原理与应用重点实验室,厦门 361024
2 湖南工业大学包装新材料与技术重点实验室,株洲 412007
Synthesis and Rheological Properties of PBSu/PBAu Polyester Ureide Multiblock Copolymer
DAI Hong1,2, LIU Yuejun1,2, CUI Lingna2, LI Qiuai2
1 Key Laboratory of Polymer Processing Principle and Application, Xiamen University of Technology, Xiamen 361024
2 Key Laboratory of New Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007
下载:  全 文 ( PDF ) ( 2467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以羟基或氨基封端的丁二酸-丁二醇-尿素(Poly(butylene-succinate-urea), PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(Poly(butylene-adipate-urea), PBAu)聚酯酰脲共聚物为预聚物,借助甲苯-2,4-二异氰酸酯(Toluene-2,4-diisocyanate, TDI)对两种预聚物进行扩链反应,得到一种新的含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物(PBSu-b-PBAu)。改变扩链时间、扩链温度、扩链剂含量进行了该嵌段共聚物的合成实验,并采用单因素选择法得到TDI扩链合成嵌段共聚物的最佳工艺条件。通过GPC、旋转流变仪、毛细管流变仪测定了最佳工艺条件下合成的不同进料比的嵌段共聚物的分子量和流变性能,结果表明含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物具有比PBSu和PBAu更高的黏度和更好的弹性效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴红
刘跃军
崔玲娜
李秋艾
关键词:  可降解高分子材料  嵌段共聚物  聚酯酰脲共聚物  扩链剂  流变性能    
Abstract: Anovel biodegradable polymer material — polyester ureide multiblock copolymers (PBSu-b-PBAu) composed of poly(butylene-succinate-urea) (PBSu) and poly(butylene-adipate-uera) (PBAu) was synthesized with toluene-2,4-diisocyanate (TDI) as a chain extender by melt polymerization. The optimum chain-extending reaction condition was obtained by conducting the synthesis experiment under varied reaction duration, reaction temperatures and chain extender adding amounts, and by applying the single factor analysis method. According to the optimum polymerization condition, we synthesized a series of PBSu-b-PBAu block copolymers, differing in feed composition, and determined their mole-cular weight and rheological propertied by means of GPC, rotational rheometry and capillary rheometry, respectively. The results showed that the multiblock copolymers possess higher viscosity and superior elastic effect compared to either PBSu or PBAu.
Key words:  degradable polymer materials    multiblock copolymers    polyester ureide copolymer    chain extender    rheological property
                    发布日期:  2019-01-31
ZTFLH:  TB34  
基金资助: 福建省科技计划项目(2018H6024)
作者简介:  戴红,2017年6月毕业于湖南工业大学,获得硕士学位,主要从事聚酯酰脲的合成及改性研究。刘跃军,2002年获华南理工大学材料加工工程专业工学博士学位,主要从事聚合物流变学、高分子材料加工工程、包装新材料与技术、纳米复合材料、可降解聚合物等领域的教学和科研工作。yjliu_2005@126.com
引用本文:    
戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
DAI Hong, LIU Yuejun, CUI Lingna, LI Qiuai. Synthesis and Rheological Properties of PBSu/PBAu Polyester Ureide Multiblock Copolymer. Materials Reports, 2019, 33(2): 347-351.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902027  或          http://www.mater-rep.com/CN/Y2019/V33/I2/347
1 Papageorgiou G Z, Bikiaris D N. Polymer,2005,46(26),12081.
2 Liu Y J, Xie W, Liu Y W, et al. Journal of Functional Materials,2012,16(43),2176(in Chinese).
刘跃军,谢伟,刘亦武,等.功能材料,2012,16(43),2176.
3 Liu P, Liu Y J. Packing Journal,2014,6(3),20(in Chinese).
刘磅,刘跃军.包装学报,2014,6(3),20.
4 Sehhar V, Gopalakrishnan S, Devi K A. European Polymer Journal,2003,39(6),1281.
5 Zheng L, Li C, Zhang D, et al. Polymer Degradation and Stability,2010,95(9),1743.
6 Zhang C H, Li L D, Wang L, et al. China Plastics Industry,2012,41(2),97(in Chinese).
张昌辉,李林东,王磊,等.塑料工业,2012,41(2),97.
7 Huang Y, Zhou T, Liu J H, et al, Polymer Materials Science and Engineering,2013,29(8),5(in Chinese).
黄勇,周涛,刘俊红,等.高分子材料科学与工程,2013,29(8),5.
8 Busse W F. Journal of Polymer Science Part A-2: Polymer Physics,1967,5(6),1249.
9 Han Y P. Synthesis and properties of PBS and its copolyesters. Master’s thesis, East China University of Science and Technology,China,2013(in Chinese).
韩艳萍.聚丁二酸丁二醇酯(PBS)共聚聚酯的合成与性能研究.硕士学位论文,华东理工大学,2013.
10 Wu Q Y, Wu J A. Polymer rheology, Higher Education Press,China,2002(in Chinese).
吴奇晔,巫静安.高分子材料流变学,高等教育出版社,2002.
11 Ri G. Polymer rheology and its application in the processing, Chemical Industry Press,China,1956(in Chinese).
金日光.高聚物流变学及其在加工中的应用.化学工业出版社,1986.
12 Yan D, Wang W J, Zhu S. Polymer,1999,40(7),1737.
[1] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[2] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[3] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[4] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[5] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[6] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[7] 张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
[8] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[9] 王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
[10] 黄林, 杨艳琼, 余峰, 付甲, 陈忠仁. 嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*[J]. 《材料导报》期刊社, 2017, 31(4): 100-104.
[11] 叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
[12] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[13] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed