Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 98-103    https://doi.org/10.11896/j.issn.1005-023X.2017.08.020
  材料研究 |
不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
王克强1, 叶深杰1, 王文锦1, 付甲2, 陈忠仁2
1 宁波大学材料科学与化学工程学院, 宁波 315211;
2 南方科技大学化学系, 深圳 518055
Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles
WANG Keqiang1, YE Shenjie1, WANG Wenjin1, FU Jia2, CHEN Zhongren2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055
下载:  全 文 ( PDF ) ( 2016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用熔融共混方式,利用非对称两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)对聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系进行增容。重点研究了嵌段比、共混方式以及分散相PMMA分子量对共混体系中非对称嵌段共聚物分布的影响,即嵌段共聚物稳定相界面与所形成胶束数量、位置之间的竞争关系。结果表明,在低分子量PMMA情况下共混方式对非对称嵌段共聚物的分布影响显著,改变共混方式可以有效减少分散相中的胶束数量,使嵌段共聚物主要分布在二元不相容增容体系两相界面。另一方面,增大PMMA分子量会改变非对称嵌段共聚物在两相界面的界面曲率,导致其在分散相中的溶解性增大,在界面上的稳定性减小,从而迁移至分散相内部并最终形成胶束。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王克强
叶深杰
王文锦
付甲
陈忠仁
关键词:  非对称嵌段共聚物  共混方式  增容  界面  胶束    
Abstract: Using melt blending, the asymmetric diblock copolymer polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) was added to compatibilize poly(cyclohexyl methacrylate) (PCHMA) and poly(methyl methacrylate) (PMMA) blends. Effects of the block ratio, blending method, and molecular weight of the dispersed phase PMMA was discussed to study the distribution of asymmetric block copolymer, namely the competition of interface and micelles. The results show that the blend method has significant influence on the distribution of the asymmetric block copolymer in the case of a low molecular weight PMMA. The change of the blending method can effectively reduce the number of the micelles in the dispersed phase, and the asymmetric block copolymer is mainly distributed on the interface of the compatibilized blends. On the other hand, the increase of the PMMA molecular weight can change the interfacial curvature of the asymmetric block copolymer between two phases, resulting in an increase of the solubility in the dispersed phase and the unstablility of block copolymer on the interface, which leads to the migration of BCPs into the dispersed phase and finally the micelles were formed.
Key words:  asymmetric block copolymer    blending methods    compatibilization    interface    micelles
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TQ320.1  
  TQ320.2  
  TQ320.7  
基金资助: 化学工程联合国家重点实验室开放课题(SKL-ChE-12D01);国家自然科学基金(NSFC21274070);宁波市“3315”计划(A类)(2012S0001);浙江省重点科技创新团队计划(2011R5001);宁波市科技局/农业与社会发展攻关项目(2011A31002);南方科技大学科研启动经费(Y01216121)
通讯作者:  陈忠仁:1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测等 E-mail:chenzr@sustc.edu.cn   
作者简介:  王克强:男,1988年生,硕士研究生,研究方向为聚合物共混与流变、高分子物理 E-mail:wwwwkq@yeah.net
引用本文:    
王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles. Materials Reports, 2017, 31(8): 98-103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.020  或          http://www.mater-rep.com/CN/Y2017/V31/I8/98
1 Zhang G Y, Wang W Z, Wu Q. Compatibilizing effect of copolymer in polymer blends Ⅱ.Grafted and random copolymers [J]. Polym Bull,2003(3):29(in Chinese).
张国颖, 汪伟志, 吴强. 共聚物在聚合物共混体系中的增容作用Ⅱ.接枝共聚物和无规共聚物[J].高分子通报,2003(3):29.
2 Wang J, Lu Y Y, Xu Y C, et al. Effects of block copolymer compa-tibilizers on phase behavior and interfacial properties of incompatible homopolymer composites [J]. Acta Polym Sin,2016(3):271(in Chinese).
王健,卢宇源,徐玉赐,等. 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响[J].高分子学报,2016(3):271.
3 Macosko C W, Guegan P, Khandpur A K, et al. Compatibilizers for melt blending: Premade block copolymers[J].Macromolecules,1996,29(17):5590.
4 Jeon H K, Zhang J, Macosko C W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends[J]. Polymer,2005,46(26):12422.
5 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. Aiche J,2015,61(1):285.
6 Zhong S, Wang C, Weng G S,et al. Effect of LIR-390 on structure and properties of natural rubber and butadiene rubber[J]. Mater Rev,2015,29(S1):267(in Chinese).
钟硕,王超,翁更生,等. 液体异戊二烯-丁二烯共聚物对天然橡胶、顺丁橡胶结构与性能的影响[J].材料导报,2015,29(S1):267.
7 Thomas S, Prud′homme R E. Compatibilizing effect of block copolymers in heterogeneous polystyrene/poly(methyl methacrylate) blends[J].Polymer,1992,33(20):4260.
8 Noolandi J, Hong K M. Effect of block copolymers at a demixed homopolymer interface[J].Macromolecules,1984,17(8):1531.
9 Noolandi J, Hong K M. Interfacial properties of immiscible homo-polymer blends in the presence of block copolymers [J]. Macromolecules,1982,15(2):482.
10 Noolandi J. Recent advances in the theory of polymeric alloys[J]. Polym Eng Sci,1984,24(2):70.
11 Vilgis T A, Noolandi J. Theory of homopolymer-block copolymer blends. The search for a universal compatibilizer[J]. Macromolecules,1990,23(11):2941.
12 Leibler L. Theory of phase equilibria in mixtures of copolymers and homopolymers interfaces near the consolute point[J]. Macromolecules,1982,15(5):1283.
13 Fredrickson G H, Bates F S. Design of bicontinuous polymeric microemulsions [J]. J Polym Sci Part B: Polym Phys,1997,35(35):2775.
14 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J].Macromol Symposia,1988,16(1):1.
15 Wang Z G, Safran S A. Equilibrium emulsification of polymer blends by diblock copolymers [J]. J de Physique,1990,51(2):185.
16 Molau G E. Heterogeneous polymer systems. Ⅰ. Polymeric oil-in-oil emulsions [J]. J Polym Sci Part A: General Papers,1965,3(4):1267.
17 Sundararaj U, Macosko C W. Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization [J]. Macromolecules,1995,28(8):2647.
18 Dadmun M. Effect of copolymer architecture on the interfacial structure and miscibility of a ternary polymer blend containing a copolymer and two homopolymers [J]. Macromolecules,1996,29(11):3868.
19 Xu Y, Thurber C M, Macosko C W, et al. Poly(methyl methacrylate)-block-polyethylene-block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends [J]. Ind Eng Chem Res,2014,53(12):4718.
20 Chen Z R, Lanzarotta J M, Nagai Y, et al. Method for mixing a rubber composition: US, 8450409 B2[P]. 2013-05-28.
21 Morse D C. Diffusion of copolymer surfactant to a polymer/polymer interface [J]. Macromolecules,2007,40(10):3831.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[12] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[13] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[14] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[15] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed