Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23179-23189    https://doi.org/10.11896/cldb.19090191
  高分子与聚合物基复合材料 |
路用相变材料研究现状和发展趋势
刘涛1, 郭乃胜1, 谭忆秋2, 尤占平3, 金鑫1
1 大连海事大学交通运输工程学院,大连 116026
2 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
3 密歇根理工大学土木与环境工程系,密歇根霍顿 MI49931
Research and Development Trend of Road Usage Phase Change Materials
LIU Tao1, GUO Naisheng1, TAN Yiqiu2, YOU Zhanping3, JIN Xin1
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
2 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
3 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton MI49931, Michigan, USA
下载:  全 文 ( PDF ) ( 2959KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变材料(PCMs)作为调温材料出现在人们视野以来,其多样性及功能性不断发展,被广泛应用于建筑材料领域,调温和节能效果十分显著。PCMs具有智能性和自发性,能有效调节基体材料的温度范围,这一特点也适用于交通材料领域,用于道路的调温从而减少温度病害。此外,采用合适的PCMs还可赋予路面更多的功能性,如融雪、抵抗冻融循环及城市热岛效应等,十分契合我国智能交通、绿色交通的可持续发展理念。
然而,PCMs在交通材料领域的研究尚不成熟,从路面应用形式到材料的选取等方面均存在诸多问题。PCMs种类繁多,根据相变形态分为固固和固液型两大类。固固型具有极高的相变温度,难以满足道路环境所需的温度需求,而固液型相变过程出现的液相形态和体积变化会破坏路面的结构,均难以满足相变路面关于调温效果和力学特性的要求。目前提出的解决方案引入了其他材料弥补的方式。
具有较好前景的方案包括复合相变材料(CPCMs)、封装包覆、化学桥联、微胶囊等。其中CPCMs具有多样性,可根据需求选取合适的基体材料和固液型相变材料(SLPCMs),通过物理吸附将两者结合;封装包覆是在PCMs外侧形成包覆外壳防止液相PCMs流动并提供足够的力学性能,如溶胶-凝胶工艺;化学桥联通过分子桥加强了基体材料和PCMs之间的联系;而微胶囊类似于封装包覆的原理,但主要针对液相PCMs且具有较小的粒径,可减轻对路面的不利影响。此外,聚氨酯固固相变材料也具有较好的路面适用性,可通过调整化学反应对其相变特性进行调节。
本文综述了路用相变材料的研究进展和发展趋势。首先明确了相变沥青路面的工作原理,确定了相变沥青路面系统的最佳应用形式,基于此提出了路用相变材料的技术要求;其次根据要求对纯相变材料进行筛选并分析了路用前景,引入复合相变材料(CPCMs)和微胶囊技术改善沥青路面中PCMs的工作环境,并对其路用适配性和应用前景进行评价;最后提出了相变自愈复合微胶囊的构想,丰富了智能路面的多样性,并对今后的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘涛
郭乃胜
谭忆秋
尤占平
金鑫
关键词:  道路工程  相变材料  智能路面  自愈合  储能放热  自融雪    
Abstract: Since the phase change materials (PCMs) as building materials extensively, the diversity and function have been continuously developed, and the temperature regulation and energy saving is significant. PCMs are intelligent and spontaneous, and can effectively adjust temperature range of matrix materials, these characteristics are also applicable to the field of traffic materials, can be used for road temperature regulation to reduce temperature diseases. In addition, more road functionality adopted by using appropriate PCMs, such as snow melting, freeze-thaw resistance and reducing urban heat island effect, correspond to the sustainable development concept of intelligent transportation and green transportation in China.
However, research of PCMs of traffic materials is not mature yet, including application form of pavement and the selection of materials. Various PCMs can be divided into solid-solid and solid-liquid types according to the phase change morphology. Further, the solid-solid type has a very high phase change temperature, is difficult to meet the temperature requirements of road environment, but the solid-liquid phase with transformation of liquid morphology and volume will damage pavement structure. None of them can meet the requirements of temperature regulation effect and mechanical characteristics of phase change pavement. At present, the proposed solution is in combination with other materials.
The promising solutions include composite phase change materials (CPCMS), encapsulation, chemical bridging and microcapsule, etc. Physical adsorption can combine suitable matrix materials with solid-liquid phase change materials (SLPCMs) according to the demand. The encapsulation, such as sol-gel, form shell outside the PCMs to prevent flowability of liquid PCMs and provide enough mechanical properties. The chemical bridging reinforce relationship between matrix material and PCMs through molecular bridge. While the principle of microcapsules is similar to encapsulation, the difference of microcapsules is smaller particle size and SLPCMs as objects, microcapsules can reduce disadvantageous with road. In addition, polyurethane solid-solid phase change material (PUSSPCM) can regulate phase change characteristics by adjustment of chemical reaction,having better road applicability.
This review mainly summarizes the research and development trend of phase change materials for road. The paper firstly exposes the working principle of phase change asphalt pavement, and then, the optimum application formation of phase change asphalt pavement system is determined and the technical requirements of road phase change materials are put forward. Additionally, pure phase change materials (PCMs) are screened and application prospects on road are analyzed. The composite phase change materials (CPCMs) and microcapsule technology to improve the working environment of PCMs are introduced in asphalt pavement, moreover, the adaptability and application prospects on road are evaluated. Finally, the conception of composite microcapsule with phase change and self-healing is addressed, and the diversity of intelligent pavement is enriched, as well as prospects for the future development of PCMs.
Key words:  words road engineering    phase change material    intelligent pavement    self-healing    energy storage and heat release    snow melting
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);辽宁省自然科学基金(20180550173)
通讯作者:  naishengguo@126.com   
作者简介:  刘涛,2018年7月毕业于内蒙古工业大学,获得工学硕士学位。现为大连海事大学交通运输工程学院博士研究生,在郭乃胜教授的指导下进行研究。目前主要研究领域为路用相变材料和智能路面材料。
郭乃胜,教授,博士,博士后。2013—2014年,美国密歇根理工大学访问学者。现任大连海事大学交通运输工程学院教授。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文70余篇,其中SCI、EI检索40余篇。
引用本文:    
刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
LIU Tao, GUO Naisheng, TAN Yiqiu, YOU Zhanping, JIN Xin. Research and Development Trend of Road Usage Phase Change Materials. Materials Reports, 2020, 34(23): 23179-23189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090191  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23179
1 Ma B, Adhikari S, Chang Y, et al. Construction and Building Materials,2013,42,114.
2 Wang H, Zhao Z Q, Zeng J. Application of Engineering Materials,2011,287-290,858.
3 Xu T, Huang X. Construction and Building Materials,2012,28(1),525.
4 Sengoz B, Isikyakar G. Construction and Building Materials,2007,22(7),1897.
5 Jordan Reed. Evaluation of the effects of aging on asphalt rubber. Master’s Thesis, Arizona State University, USA,2010.
6 He L, Ma Y, Ling T Q, et al. Journal of Functional Materials,2015,46(21),21093(in Chinese).
何亮,马育,凌天清,等.功能材料,2015,46(21),21093.
7 Cui Y N, Liu T. Journal of Building Materials,2018,21(4),626(in Chinese).
崔亚楠,刘涛.建筑材料学报,2018,21(4),626.
8 Fu Y. Research on aging characteristics of nano-montmorillonite modified asphalt and asphalt mixture. Ph.D. Thesis,Wuhan University of Technology,2010(in Chinese).
付玉.纳米蒙脱土改性沥青及沥青混合料老化特性研究.博士学位论文,武汉理工大学,2010.
9 Zhu C F. Research on road performance and mechanical properties of diatomite-basalt fiber compound modified asphalt mixture. Master’s Thesis,Jilin university,2018(in Chinese).
朱春凤.硅藻土-玄武岩纤维复合改性沥青混合料路用性能及力学特性研究.硕士学位论文,吉林大学,2018.
10 Sharma A, Tyagi V V, Chen C R, et al. Renewable and Sustainable Energy Reviews,2009,13(2),318.
11 Yuan Y P, Xiang B, Cao X L, et al. Journal of Southwest Jiaotong University,2016,51(3),585(in Chinese).
袁艳平,向波,曹晓玲,等.西南交通大学学报,2016,51(3),585.
12 Ahmad M, Bontemps A, Sall E H, et al. Energy and Buildings,2006,38(6),673.
13 Leng G H, Cao H, Peng H, et al. Energy Storage Science and Technology,2017,6(5),1058(in Chinese).
冷光辉,曹惠,彭浩,等.储能科学与技术,2017,6(5),1058.
14 Feng Z, Hu D X, Zhao L, et al. Materials Review,2015,29(S1),144(in Chinese).
冯哲,虎东霞,赵龙,等.材料导报,2015,29(S1),144.
15 Lachance-Tremblay E, Perraton D, Vaillancourt M, et al. Construction and Building Materials,2018,184,58.
16 Prozzi J A,Madanat S M. Journal of Transportation Engineering,2003,129(6),635.
17 Si W, Ma B, Li N, et al. Construction and Building Materials,2014,68,572.
18 Chen M, Xu G, Wu S, et al. In: I Series of Proceedings of International Conference on Mechanic Automation and Control Engineering (MACE). Wuhan,2010.pp.1341.
19 Si W, Zhou X Y, Ma B, et al. Construction and Building Materials,2015,98,547.
20 Bhagya Athukorallage, Tharanga Dissanayaka, Sanjaya Senadheera, et al. Construction and Building Materials,2018,164,419.
21 Tan Y Q, Yao L, Wang H P, et al. Journal of Harbin Institute of Technology,2012,44(12),73(in Chinese).
谭忆秋,姚李,王海朋,等.哈尔滨工业大学学报,2012,44(12),73.
22 Zakariaa Refaa, Muhammad Rafiq Kakar, Anastasia Stamatiou, et al. International Journal of Thermal Sciences,2018,133,140.
23 Wan L. Study on preparion and performance evalution of temperature control asphalt pavemant with phase change materials. Master’s Thesis, Wuhan University of Technology,2012(in Chinese).
万路.相变控温沥青混凝土的制备与性能研究.硕士学位论文,武汉理工大学,2012.
24 Si W, Ma B, Zhou X Y, et al. Construction and Building Materials,2018,178,529.
25 Han C J, Yu X. Renewable Energy,2018,123,417.
26 Zhang L Y. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material.Master’s Thesis, Hebei University of Technology,2015(in Chinese).
张璐一.掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究.硕士学位论文,河北工业大学,2015.
27 Li F, Zhou S Q, Chen S, et al. Journal of Materials in Civil Engineering,2018,30(11),04018303.
28 Liang N X, Yu J Y, Yu W, et al. Journal of Chongqing Jiaotong University (Natural Science),2019,38(11),63(in Chinese).
梁乃兴,俞靖洋,于伟,等.重庆交通大学学报(自然科学版),2019,38(11),63.
29 Dong Z J, Li S L, Wen J Y, et al. Journal of Traffic and Transportation Engineering,2014,14(2),1(in Chinese).
董泽蛟,李生龙,温佳宇,等.交通运输工程学报,2014,14(2),1.
30 Du Y F, Liu P S, Wang J C, et al. Construction and Building Materials,2019,212,1.
31 Song X F, Cai Y B, Wu Y, et al. Journal of Nanoscience and Nanotech-nology,2019,19,7044.
32 Zhang L, An L, Wang Y H, et al. Chemical Engineering Journal,2019,373,857.
33 Xiao Q Q, Zhang M D, Fan J X, et al. Solar Energy Materials and Solar Cells,2019,199,91.
34 Li C, Li Q, Ding Y L. Renewable Energy,2019,140,140.
35 Xu Z, Huang P, Wu E H, et al. Energy Storage Science and Technology,2019,8(2),371.
36 Chen C Z, Liu W M, Wang H W, et al. Applied Energy,2015,152,198.
37 Gunasekara S N, Chiu J N, Martin V, et al. Solar Materials and Solar Cells,2018,174,248.
38 Zhao P P. Study on preparation and performance of composite solid-solid phase change materials. Ph.D. Thesis,University of Science and Techno-logy of China,2016(in Chinese).
赵盼盼.固固复合相变材料制备及性能研究.博士学位论文,中国科学技术大学,2016.
39 Wu Z B, Song B F, Li Y, et al. Chemical Research and Application,2007,19(11),1282.
40 Wang X W, Huang W. CIESC Jorunal,2013,64(8),2839(in Chinese).
王小伍,黄玮.化工学报,2013,64(8),2839.
41 Mu X R. Study on solid-solid phase-change thermal storage materials. Master’s Thesis,Hebei University of Technology,2007(in Chinese).
牟兴瑞.多元醇固-固相变材料的研究.硕士学位论文,河北工业大学,2007.
42 Jin J, Lin F P, Liu R H, et al. Scientific Reports,2017,7,16998.
43 Jin J, Xiao T, Zheng J L, et al. Construction and Building Materials,2018,190,235.
44 Ma B, Li J,Liu R W, et al. Advanced Materials Research,2011,287-290,978.
45 Li C. Influence of phase change materials on temperature and performance of asphalt mixtures. Master’s Thesis, Chang’an University,2010(in Chinese).
李超.相变材料对沥青混合料温度与性能的影响研究.硕士学位论文,长安大学,2010.
46 Cheng S, Chen Y, Yu H, et al. E-Polymers,2013,8(1),1569.
47 KuruA, Aksoy S A. Textile Research Journal,2014,84(4),337.
48 MA B, Duan S Y, Wei K, et al. Bulletin of the Chinese Ceramic Society,2018,37(10),3232(in Chinese).
马骉,段诗雨,魏堃,等.硅酸盐通报,2018,37(10),3232.
49 Ha J W, Kim S M, Park H, et al. Journal of Nanoscience and Nanotech-nology,2019,19(10),6554.
50 Jin X, Guo N S, You Z P, et al. Materials Reports A: Review Papers,2019,33(11),3686(in Chinese).
金鑫,郭乃胜,尤占平,等.材料导报:综述篇,2019,33(11),3686.
51 Sun M, Zheng M L, Qu G Z, et al. Construction and Building Materials,2018,191,386.
52 Guruprasad Alva, Lin Yaxue, Fang Guiyin. Solar Energy Materials and Solar Cells,2018,186,14.
53 Wei K, Ma B, Duan S Y. Journal of Materials in Civil Engineering,2019,31(8),04019139.
54 Lu X, Fang C, Sheng X X, et al. Industrial & Engineering Chemistry Research,2019,58(2),3024.
55 Zhou Y, Wang X J, Liu X D, et al. Solar Energy Materials and Solar Cells,2019,193,13.
56 Zhou Y, Wang X J, Liu X D, et al. Carbon,2019,142,558.
57 Taoufik Mnasri, Adel Abbessi, Rached Ben Younes, et al. Science and Engineering of Composite Materials,2018,25(6),1157.
58 Zhang Y B, Zhu H Z, Li J R, et al. Journal of Zhengzhou University (Engineering Science),2012,33(3),10(in Chinese).
张一博,朱洪洲,李菁若,等.郑州大学学报(工学版),2012,33(3),10.
59 Hu X D, Gao X N, Li D L, et al. CIESC Journal,2013,64(10),3831(in Chinese).
胡小冬,高学农,李得伦,等.化工学报,2013,64(10),3831.
60 Wang T Y, Wang S F, Luo R L, et al. Applied Energy,2016,171,113.
61 Zhou W F. Study on adhesion of interface between asphalt and aggregate. Master’s Thesis, Chang’an University,2002(in Chinese).
周卫峰.沥青与集料界面粘附性研究.硕士学位论文,长安大学,2002.
62 Xu B S. Physics and chemistry of material interface, Chemical Industry Press,2006(in Chinese).
许并社.材料界面的物理与化学,化学工业出版社,2006.
63 Hu S G, Li Q, Huang S L, et al. Highway,2009(7),291(in Chinese).
胡曙光,李潜,黄绍龙等.公路,2009(7),291.
64 Guo J F. Application and selection of modified bitumen aiming at asphalt pavement of the high temperature and rainy area. Master’s Thesis,Southwest Jiaotong University,2006(in Chinese).
郭捷菲.高温多雨地区沥青路面改性沥青选型及应用.硕士学位论文,西南交通大学,2006.
65 Liu X. Inorganic compounds@n-tetradecane microencapsulated phase change materials. Master’s Thesis,South China University of Technology,2015(in Chinese).
刘鑫.无机物包覆正十四烷微胶囊相变材料研究.硕士学位论文,华南理工大学,2015.
66 Zhou S X, Zhang X L, Liu S. Energy Storage Science and Technology,2018,7(4),692(in Chinese).
周孙希,章学来,刘升.储能科学与技术,2018,7(4),692.
67 Zhi C, Feng S, Lei C, et al. Solar Energy Materials & Solar Cells,2012,102(7),131.
68 Wang L, Meng D. Applied Energy,2010,87(8),2660.
69 Zhang X L, Yang Y. Chemical Engineering,2013,41(11),10(in Chinese).
章学来,杨阳.化学工程,2013,41(11),10.
70 Chen W P, Zhang X L, Ding J H, et al. Journal of Refrigeration,2016,37(3),12(in Chinese).
陈文朴,章学来,丁锦宏,等.制冷学报,2016,37(3),12.
71 He L H, Yang F, Tong Y, et al. Highway,2016,61(8),181(in Chinese).
何丽红,杨帆,佟禹,等.公路,2016,61(8),181.
72 Zhong L M, Yang M, Luan Y, et al. Chinese Journal of Engineering,2015,37(7),936(in Chinese).
钟丽敏,杨穆,栾奕,等.工程科学学报,2015,37(7),936.
73 Chen J, Zhang H Z, Sun L X, et al. Applied Chemical Industry,2014,43(4),590(in Chinese).
陈娇,张焕芝,孙立贤,等.应用化工,2014,43(4),590.
74 Zhou X F, Xiao H N, Feng J. Composite Science and Technology,2009,69(7-8),1246.
75 Ma F, Wang X Y, Li F, et al. Journal of Materials Engineering,2010(6),54(in Chinese).
马烽,王晓燕,李飞,等.材料工程,2010(6),54.
76 Jin J, Lin F P, Liu R H, et al. Scientific Report,2017,7,16998.
77 He L H, Wang H, Yang F, et al. Chemical Industry and Engineering Progress,2018,37(3),1076(in Chinese).
何丽红,王浩,杨帆,等.化工进展,2018,37(3),1076.
78 Jin J. Construction and Building Materials,2018,190,235.
79 Ren J P, Ma B, Si W. Construction and Building Materials,2014,71,53.
80 Zhang D, Chen M Z, Liu Q T, et al. Materials,2018,11(5),818.
81 Su J F, Schlangen E. Chemical Engineering Journal,2012,198,289.
82 Xu D, Yang R. Journal of Applied Polymer Science,2019,136(21),47552.
83 Liu H, Wang X D, Wu D Z. Sustainable energy & Fuel,2019,3(5),1091.
84 Guo J H, Zhang P Z, Li S H, et al. Fine Chemicals,2016,33(9),971.
85 Jiang Z N, Yang W B, He F F, et al. ACS Sustainable Chemistry & Engineering,2018,6(4),5182.
86 Jiang Z N, Yang W B, He F F, et al. Langmuir,2018,34(47),14254.
87 Yang Z X, John Hollar, He X D, et al. Cement and Concrete Composites,2011,33(4),506.
88 Wang T Y. Research on microencapsulation of paraffin based core with calcium carbonate shell for temperature regulation and heat transfer enhancement. Ph.D. Thesis,South China University of Technology,2017(in Chinese).
王婷玉.碳酸钙包覆石蜡基相变微胶囊的调温及强化传热研究.博士学位论文,华南理工大学,2017.
89 Hu L. Forming mechanism and properties of melamine-urea-formaldehyde resin microcapsules.Ph.D. Thesis, Chinese Academy of Forestry,2016(in Chinese).
胡拉.三聚氰胺-尿素-甲醛树脂微胶囊形成机理及性能研究.博士学位论文,中国林业科学研究院,2016.
90 Fei X N, Zhao H B, Zhang B L, et al. Colloids and Surface A-Physicochemical and Engineering Aspects,2015,469,300.
91 Su J F, Qiu J, Schlangen E. Polymer Degradation and Stability,2013,98(6),1205.
92 Wang X F, Guo Y D, Su J F, et al. Nanomaterials,2018,8(6),364.
93 Zhang L, Yang W B, Jiang Z N, et al. Applied Energy,2017,197,354.
94 Su J F, Erik Schlangen. Chemical Engineering Journal,2012,198,289.
95 Brown E N, Kessler M R, Sottos N R, et al. Journal of Microencapsulation,2003,20(6),719.
96 Su J F, Qiu J, Schlangen E. Polymer Degradation and Stability,2013,98(6),1205.
97 Su J F, Erik Schlangen, Qiu J. Powder Technology,2013,235,563.
98 Mihashi H, Nishiwaki T. Journal of Advanced Concrete technology,2012,10(5),170.
99 Ma Q, Wang J, Zhang X Y. Packaging Engineering,2016,37(19),44.
100 Hu Q H, Chen Y, Hong J L, et al. Molecules,2019,24(5),916.
101 Li F, Zhou S Q, Chen S, et al. Journal of Materials in Civil Enginee-ring,2018,30(11),04018303.
102 Guo Y L, Yang W B, Jiang Z N, et al. Solar Energy Materials and Solar Cells,2019,196,16.
103 Agrawal R, Hanna J, Gunduz I E, et al. Molecules,2019,24(10),1883.
104 Garcia A, Jelfs J, Austin C J. Construction and Building Materials,2015,101,309.
105 White S R, Sottos N R, Geubelle P H, et al. Nature,2001,409(6822),794.
106 Mookhoek S D, Colver P J, Fischer H, et al. In: ICSHM. Proceedings of the First International Conference on Self Healing Materials. Amsteldam,2007.pp.1.
107 Su J F, Han S, Wang Y Y, et al. Construction and Building Materials,2017,147,533.
108 Wang T Y, Wang S F, Luo R L, et al. Applied Energy,2016,171,113.
[1] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[2] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[3] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[4] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[5] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[6] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[7] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[8] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[9] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[10] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[11] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[12] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[13] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[14] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[15] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed