Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3613-3619    https://doi.org/10.11896/cldb.18100048
  无机非金属及其复合材料 |
相变材料的过冷现象及其抑制方法的研究进展
张正飞1, 秦紫依1, 李勇1, 王毅1,2
1 兰州理工大学石油化工学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Progress in Supercooling and Suppression Methods of Phase Change Materials
ZHANG Zhengfei1, QIN Ziyi1, LI Yong1, WANG Yi1,2
1 College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 8095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过冷是材料液-固相变过程中为提供离子扩散、晶体生长及晶面扩大所需能量而产生的一种亚稳态。过冷是结晶过程的推动力,但大的过冷度导致相变材料结晶温度降低、结晶时间延迟,使得储存的潜热不能及时释放,储-放热温度不匹配,降低了热能利用效率。过冷度大已成为限制相变储热技术规模化应用的重要影响因素之一。
    大量实验结果表明:过冷现象与熔体晶核的生成与长大速率、环境温度、接触面的粗糙程度、熔体温度等因素有关,但其产生的内在机制尚不明确,影响规律和调控手段仍需借助实验探索。目前,主要采用外加添加剂或在胶囊化、流体化过程中加入添加剂的添加晶种法,以及通过搅拌、超声振荡和鼓泡等外部刺激的动力学成核法诱发过冷液体结晶。
    利用外加成核剂、纳米颗粒以及部分未熔化母相晶体作为晶核诱发非均匀成核是抑制过冷现象最常用、最有效的方法。为提高添加剂的分散性和抑制水合无机盐类相变材料的相分离现象,在添加成核剂的同时往往需要加入一定量的增稠剂,但成核剂和增稠剂的添加量需要优化。胶囊化可以改变相变材料的结晶特性,目前的研究一致认为在胶囊化前添加成核剂有利于改善相变材料的过冷度。动力学成核常采用的方法是超声振荡法,其通过空化作用使晶体持续破碎并与熔体混合而提高晶核的分散性和加速结晶过程。在超声的同时添加纳米颗粒也有利于抑制过冷度。
    本文简述了过冷现象和典型的过冷曲线,分析了影响过冷度的因素,并着重介绍了外加添加剂法、胶囊化法、功能流体法和超声振荡法等抑制过冷度的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张正飞
秦紫依
李勇
王毅
关键词:  相变材料  过冷度  成核理论  过冷度抑制  胶囊化法  功能流体法  添加剂  超声振荡    
Abstract: Supercooling is a metastable state produced in the process of liquid-solid phase transition to provide energy for ionic diffusion, crystal growth and crystal surface expansion. Although it is the driving force of crystallization, the excessive supercooling degree leads to the decrease of crystallization temperature and extension of crystallization time, which further makes the stored energy released in unsuited temperature and reduces the thermal energy utilization efficiency.The excessive supercooling degree has become one of the most important factors that restrict the large-scale application of phase change thermal storage technology.
    Numerous experimental results demonstrate that supercooling phenomenon is closely related to the formation and growth rate of melt crystal nucleus, environment temperature, roughness of contact surface, melt temperature, etc. Unfortunately, the intrinsic mechanism of the supercooling phenomenon is still problematic, and yet it is also necessary to experimentally explore the influence law and the regulation means. Currently, manual seeding including adding nucleating agents or nanoparticles, introducing additives before capsulation or fluidization, as well as dynamic nucleation including mechanical vibration, stirring and ultrasonic irradiation, are the most effective ways to induce crystallization.
    Heterogeneous nucleation induced by adding nucleating agents, nanoparticles and partially unmelted parent phase crystals is the most commonly used and effective method to eliminate supercooling. In order to improve the dispersibility of additives and prevent phase separation of hydrated inorganic salt, a certain amount of thickening agents is often required to be added apart from nucleating agent, but the addition amounts of the two need to be optimized. Capsulation can change the crystallization characteristics of phase change materials. Previous research has reached a consensus that dispersing nucleating agents prior to capsulation will improve the supercooling degree of phase change materials. Ultrasonic oscillation, the commonly used dynamic nucleation method, can accelerate the crystallization process and improve the dispersion of the crystal nucleus by breaking crystals and mixing with the melt. The addition of nanoparticles along with applying ultrasonic process are also conducive to suppressing supercooling.
    This paper briefly described the supercooling phenomenon and typical supercooling curves, as well as the factors influencing supercooling degree. In addition, it summarizes the methods of suppressing supercooling, including adding additives method, capsulation method, functional fluid method and ultrasonic vibration method.
Key words:  phase change materials    supercooling degree    nucleation theory    supercooling suppresson    capsulation    functional fluid    additive    ultrasonic vibration
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51562023);甘肃省自然科学基金(145RJZA185)
作者简介:  张正飞,2016年6月毕业于华北理工大学,获得理学学士学位。现为兰州理工大学石油化工学院硕士研究生,在王毅教授指导下进行研究。目前主要研究方向为多元醇复合相变材料的过冷特性分析。
    王毅,兰州理工大学石油化工学院教授,博士研究生导师,应用化学系主任,甘肃省化学会青年工作者委员会委员,国家自然科学基金项目和中国博士后科学基金评审专家。2014年6月兰州理工大学先进材料及其制备技术专业博士研究生毕业,获工学博士学位。2013年入选第八批“西部之光”资助计划,师从杨万泰院士。近年来,在相变储能与环境催化领域发表论文40余篇,包括Solar Energy Materials & Solar Cells、Energy and Buildings、Renewable Energy和Energy Conversion and Management等。
引用本文:    
张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
ZHANG Zhengfei, QIN Ziyi, LI Yong, WANG Yi. Progress in Supercooling and Suppression Methods of Phase Change Materials. Materials Reports, 2019, 33(21): 3613-3619.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100048  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3613
1 Pandey A K, Hossain M S, Tyagi V V, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 281.
2 Sharma A, Tyagi V V, Chen C R, et al.Renewable and Sustainable Energy Reviews, 2009, 13, 318.
3 Tang X F, Li W, Shi H F, et al.Colloid and Polymer Science, 2013, 291, 1705.
4 Wang Y, Li S, Zhang T, et al. Solar Energy Material & Solar Cells, 2017, 171, 60.
5 Yuan Y P, Zhang N, Li T Y, et al.Energy, 2016, 97, 488.
6 Ona E P, Ozawa S, Kojima Y, et al.Journal of Chemical Engineering of Japan, 2003, 36, 799.
7 Safari A, Saidur R, Sulaiman F A, et al.Renewable and Sustainable Energy Reviews, 2017, 70, 905.
8 Deng Y, Li J H, Deng Y X, et al.ACS Sustainable Chemistry & Enginee-ring, 2018, 6, 6792.
9 Ushak S, Gutierrez A, Barreneche C, et al.Solar Energy Material & Solar Cells, 2016, 157, 1011.
10 Gunasekara S N, Pan R, Chiu J N, et al.Applied Energy, 2016, 162, 1439.
11 Duquesne M, Godin A, Del Barrio E, et al.Energy Procedia, 2017, 139, 315.
12 Dannemand M, Johansen J B, Furbo S.Solar Energy Material & Solar Cells, 2016, 145, 287.
13 Kibria M A, Anisur M R, Mahfuz M H, et al.Energy Conversion and Management, 2015, 95, 69.
14 Al-Shannaq R, Kurdi J, Al-Muhtaseb S, et al.Energy, 2015, 87, 654.
15 Song Z C, Deng Y, Li J H, et al.Materials Research Bulletin, 2018, 102, 203.
16 Cao F Y, Yang B.Applied Energy, 2014, 113, 1512.
17 Seppälä A, Meriläinen A, Wikström L, et al.Experimental Thermal and Fluid Science, 2010, 34, 523.
18 Fang G Y, Li H, Yang F, et al.Chemical Engineering Journal, 2009, 153, 217.
19 Wei L L, Ohsasa K.ISIJ International, 2010, 50, 1265.
20 Saeed R M, Schlegel J P, Castano C, et al.Journal of Energy Storage, 2018, 15, 91.
21 Huang Z W, Xie N, Luo Z G, et al.Solar Energy Material & Solar Cells, 2017, 179, 152.
22 Zhang Y P.Phase change energy storage: Theory and applications, University of Science and Technology of China Press, China, 1996 (in Chinese).
张寅平.相变储能: 理论和应用, 中国科学技术大学出版社, 1996.
23 Yuan K J, Zhou Y, Sun W C, et al.Composites Science and Technology, 2018, 156, 78.
24 Zong X, Cai Y B, Sun G Y, et al.Solar Energy Material & Solar Cells, 2015, 132, 183.
25 Shin H K, Park M, Kim H Y, et al.Applied Thermal Engineering, 2015, 75, 978.
26 Xiao Q Q, Fan J X, Fang Y B, et al.Applied Thermal Engineering, 2018, 136, 701.
27 Liu C Z, Wang C, Li Y M, et al.RSC Advances. 2017, 7, 7238.
28 Zhang H C, Van Wissen R M J, Gaastra-Nedea S V, et al.Proceedings of the Advances in Thermal Energy Storage, 2014, 99, 1.
29 Liu Y D, Wang J Q, Su C J, et al.Applied Thermal Engineering, 2017, 115, 1226.
30 Godin A, Duquesne M, Palomo Del Barrio E, et al.Quantitative Infrared Thermography Journal, 2015, 12, 237.
31 Zhang X M, Zhong Y J, Luo L H, et al.Journal of Zhejiang University of Technology, 2006, 34(6), 688 (in Chinese).
张雪梅, 钟英杰, 骆兰花, 等.浙江工业大学学报, 2006, 34(6), 688.
32 Ishikawa Y, Shiozawa M, Kondo M, et al.International Journal of Heat and Mass Transfer, 2014, 74, 215.
33 Puupponen S, Mikkola V, Ala-Nissila T, et al.Applied Energy, 2016, 172, 96.
34 Zhang X L, Chen X D, Han Z, et al.International Journal of Heat and Mass Transfer, 2016, 92, 490.
35 Li G Z, Feng G H, He N, et al.Transactions of Materials and Heat Treatment, 2013, 34(9), 31 (in Chinese).
李国柱, 冯国会, 赫娜, 等.材料热处理学报, 2013, 34(9), 31.
36 Ma Y, Liu Y C, Zhu X H, et al.Journal of Central South University (Science and Technology), 2017, 48(7), 1930 (in Chinese).
马颖, 刘益才, 朱晓涵, 等.中南大学学报(自然科学版), 2017, 48(7), 1930.
37 Faucheux M, Muller G, Havet M, et al.International Journal of Refrigeration, 2006, 29, 1218.
38 Heu C S, Kim S W, Lee K S, et al.Energy Conversion and Management, 2017, 149, 608.
39 Wang Z P, Guo C H, Wang K Z, et al.Chemical Engineering. 2011, 39(5), 27 (in Chinese).
王智平, 郭长华, 王克振, 等.化学工程, 2011, 39(5), 27.
40 Zhu K Y, Wang S, Qi H Z, et al.Chemical Research in Chinese Universities, 2012, 28(3), 539.
41 Ona E P, Zhang X M, Kyaw K, et al.Journal of Chemical Engineering of Japan, 2001, 34(3), 376.
42 Li J T, Mao J F, Li W H, et al.Journal of Refrigeration, 2009, 30(5), 32 (in Chinese).
李金田, 茅靳丰, 李伟华, 等.制冷学报, 2009, 30(5), 32.
43 Xu J X, Ke X F.Materials Review, 2007, 21(S2), 319 (in Chinese).
徐建霞, 柯秀芳.材料导报, 2007, 21(专辑IX), 319.
44 He M Z, Yang L W, Zhang Z T.Journal of Chemical Industry and Engineering, 2017, 68(11), 4016 (in Chinese).
何媚质, 杨鲁伟, 张振涛.化工学报, 2017, 68(11), 4016.
45 Jin X, Medina M A, Zhang X S, et al.International Journal of Thermophysics, 2014, 35, 45.
46 Lu D J, Hu P, Zhao B B, et al.Journal of Engineering Thermophysics, 2012, 33(8), 1279 (in Chinese).
卢大杰, 胡芃, 赵斌斌, 等.工程热物理学报, 2012, 33(8), 1279.
47 Hu P, Lu D J, Fan X Y, et al.Solar Energy Material & Solar Cells, 2011, 95, 2645.
48 Shen S, Tan S J, Wu S, et al.Energy Conversion and Management, 2018, 157, 41.
49 Zhang X L, Ding J H, Luo X X, et al.Journal of Refrigeration, 2016, 37(1), 70 (in Chinese).
章学来, 丁锦宏, 罗孝学, 等.制冷学报, 2016, 37(1), 70.
50 Zhang X L, Li C L, Chen X D, et al.Journal of Engineering Thermophy-sics, 2014, 35(12), 2334 (in Chinese).
章学来, 李春蕾, 陈旭东, 等.工程热物理学报, 2014, 35(12), 2334.
51 Cui W L, Yuan Y P, Sun L L, et al.Renewable Energy, 2016, 99, 1029.
52 Mao J F, Hou P M, Liu R G, et al.Applied Thermal Engineering, 2017, 119, 585.
53 Wang Y, Shi H, Xia T D, et al. Materials Chemistry and Physics, 2012, 135, 181.
54 Wang Y, Ji H, Shi H, et al.Energy Conversion and Management, 2015, 98, 322.
55 Chaiyasat P, Noppalit S, Okubo M, et al.Physical Chemistry Chemical Physics, 2014, 17, 1053.
56 You M, Wang X C, Zhang X X, et al.Journal of Polymer Research, 2011, 18, 49.
57 Zhang X X, Fan Y F, Tao X M, et al.Materials Chemistry and Physics, 2004, 88, 300.
58 Zhang X X, Fan Y F, Tao X M, et al.Colloid and Interface Science, 2005, 281, 299.
59 Fan Y F, Zhang X X, Wang X C, et al.Thermochimica Acta, 2004, 413, 1.
60 Shi L M, Wang W J, Li B G, et al.Journal of Materials Science & Engineering, 2013, 31(1), 142 (in Chinese).
石李明, 王文俊, 李伯耿, 等.材料科学与工程学报, 2013, 31(1), 142.
61 Günther E, Huang L, Mehling H, et al.Thermochimica Acta, 2011, 522, 199.
62 Huang L.Journal of Chemical Industry and Engineering, 2018, 69(4), 1749 (in Chinese).
黄莉.化工学报, 2018, 69(4), 1749.
63 Wang F X, Zhang C, Liu J, et al.Applied Energy, 2017, 188, 97.
64 Munyalo J M, Zhang X L, Xu X F.Journal of Energy Storage, 2018, 17, 47.
65 Zhang X Y, Niu J L, Wu J Y, et al.Energy Storage Science and Technology, 2014, 3(2), 133.
66 El Rhafiki T, Kousksou T, Jamil A, et al.Solar Energy Material & Solar Cells, 2011, 95, 2588.
67 Sakai T, Nakagawa Y, Iijima K.Colloids and Surfaces A, 2017, 529, 394.
68 Ona E P, Zhang X M, Ozawa S, et al.Journal of Chemical Engineering of Japan, 2002, 35, 290.
69 Zhang X M, Cai L Y, Su Z J, et al.Journal of Chemical Industry and Engineering, 2010, 61(1), 104 (in Chinese).
张雪梅, 蔡路茵, 苏忠杰, 等.化工学报, 2010, 61(1), 104.
70 Zhang X M, Zhong Y J, Huang L W, et al.Journal of Zhejiang University of Technology, 2005, 33(2), 144 (in Chinese).
张雪梅, 钟英杰, 黄立维, 等.浙江工业大学学报, 2005, 33(2), 144.
71 Hu P F. Study on the supercooling and nucleation characteristics of graphene oxide nanofluids under acoustic levitation. Master's Thesis, Chongqing University, China, 2014 (in Chinese).
胡鹏飞. 声悬浮条件下氧化石墨烯纳米流体的过冷及成核特性研究. 硕士学位论文, 重庆大学, 2014.
72 Liu Y D, Li X, Hu P F, et al.International Journal of Refrigeration, 2015, 50, 80.
[1] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[2] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[3] 刘康, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺. 金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J]. 材料导报, 2019, 33(19): 3251-3256.
[4] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[5] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[6] 李鑫, 窦德龙, 骆顺志, 程越. 无级变速器润滑油的发展现状[J]. 材料导报, 2018, 32(24): 4398-4404.
[7] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[8] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[9] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[10] 董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
[11] 黄雪, 崔英德, 尹国强, 张步宁, 冯光炷. 癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 52-56.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed