Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23183-23191    https://doi.org/10.11896/cldb.20100235
  高分子与聚合物基复合材料 |
磁流变脂材料及其应用研究进展
杨广鑫1, 潘家保1,2, 周陆俊1, 高洪1, 王晓雷2
1 安徽工程大学机械工程学院,芜湖 241000
2 南京航空航天大学直升机传动技术重点实验室,南京 210016
Research Progress and Application of Magnetorheological Grease Materials
YANG Guangxin1, PAN Jiabao1,2, ZHOU Lujun1 , GAO Hong1 , WANG Xiaolei2
1 School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2 National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 8827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 智能材料是指在磁场、电场、应力等环境变量作用下性能可控的新型功能材料,是继天然材料、合成高分子材料、人工设计材料之后的第四代材料。磁流变材料是一种重要的场响应型智能材料,主要成分为磁性颗粒和非磁性基载液,其物理和流变特性受磁场影响,并且具有优异的可控性,这种特性使磁流变材料受到学者的广泛关注,在科学与工程领域拥有良好的应用前景。
近年来出现的磁流变材料包括磁流变液、磁流变脂和磁流变弹性体等,目前磁流变液的研究与应用较为广泛,磁流变液可通过外部磁场进行调控,流变性质在几个数量级上表现出阶跃性和可调性的变化,可以在几毫秒内从类流体转变为类固体状态。在零磁场强度下,磁流变液的行为类似于非牛顿流体,具体特性取决于磁流变液的自身组分,通常表现出具有屈服应力的宾汉塑性流体行为。磁流变液可以在阻尼器、减震器和离合器等领域提供半主动控制,但沉降问题一直制约着磁流变液的发展。磁流变脂以润滑脂为基载液,润滑脂的特殊结构能够有效改善磁流体的沉降稳定性,因此在磁流变器件应用领域展现出显著优势。
本文从磁流变脂制备、流变特性、磁流变脂器件及其潜在应用这四个方面综述了磁流变脂材料及其应用研究进展,针对磁流变脂的材料特性和实际应用展开讨论,与磁流变液进行相应的比较,并对磁流变脂作为润滑材料的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨广鑫
潘家保
周陆俊
高洪
王晓雷
关键词:  智能材料  磁流变  非牛顿流体  磁流变脂  流变特性    
Abstract: Intelligent materials are the fourth generation of materials after natural materials, synthetic polymer materials and artificial design materials. New types of functional materials whose performance can be controlled under the action of magnetic field, electric field, stress, and other environmental variables have been developed. As one kind of the important field-responsive intelligent materials, magnetorheological(MR) mate-rials are composed primarily of magnetic particles and non-magnetic base carrier fluids. The physical and rheological properties of MR materials are affected by magnetic field and have excellent controllability. Thus, MR materials have great application prospects in the fields of science and engineering.
Some of the MR materials that have been recently developed are MR fluids, MR greases and MR elastomers. Research on and application of MR fluids are more extensive than those of MR greases and MR elastomers. MR fluids can change from a fluid-like to a solid-like state in a few milliseconds by controlling the magnetic field. Moreover, their rheological properties show stepwise and adjustable changes in several orders of magnitude. Under zero magnetic field strength, the behavior of MR fluids is similar to that of non-Newtonian fluid. Furthermore, the specific cha-racteristics of MR fluids depend on their composition, which usually exhibits the behavior of Bingham plastic fluid with yield stress. MR fluids can provide semi-active control in the fields of dampers, shock absorbers and clutches. However, the problem of settlement restricts the development of MR fluids. MR greases are based on lubricating grease, and the special structure of lubricating grease can effectively improve the sedimentation stability of MR materials. So MR greases show significant advantages in the applications of MR devices.
This paper reviews the progress that has been achieved thus far in the research on MR greases and their applications from four aspects: preparation, rheological properties, devices, and potential applications. The material characteristics and practical applications of MR greases are discussed and compared with those of MR fluids. The possible development trend of MR greases as a lubricating material is discussed.
Key words:  intelligent materials    magnetorheological    non-Newtonian fluid    magnetorheological greases    rheological properties
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  O373  
基金资助: 国家自然科学基金(52005004);中国博士后科学基金(2019M661821);南京航空航天大学直升机传动技术重点实验室开放课题(HTL-O-20G09);安徽高校自然科学研究项目(KJ2018A0112)
通讯作者:  panjiabao@ahpu.edu.cn   
作者简介:  杨广鑫,2019年6月毕业于安徽工程大学,获得工学学士学位。现为安徽工程大学机械工程学院硕士研究生,在潘家保副教授的指导下进行研究。目前主要研究领域为磁流变脂热流变行为。
潘家保,安徽工程大学机械工程学院副教授、硕士研究生导师。2011年6月本科毕业于安徽理工大学机械工程学院,2016年6月在中国矿业大学机电工程学院机械制造及其自动化专业取得博士学位。主要从事磁流变脂流变特性及其应用研究。
引用本文:    
杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
YANG Guangxin, PAN Jiabao, ZHOU Lujun, GAO Hong, WANG Xiaolei. Research Progress and Application of Magnetorheological Grease Materials. Materials Reports, 2021, 35(23): 23183-23191.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100235  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23183
1 Rabinow J. Transactions of the American Institute of Electrical Engineers, 1948, 67(12), 1308.
2 Li K Q, Dai J, Chang H. et al. Journal of Detection & Control, 2019, 41(1), 6(in Chinese).
李凯权, 代俊, 常辉, 等.探测与控制学报, 2019, 41(1), 6.
3 Hu Z S, Wu Z Y, Mo Z Y, et al. Journal of Engineering Thermophysics, 2018, 39(6), 1205(in Chinese).
胡臻尚, 吴张永, 莫子勇, 等.工程热物理学报, 2018, 39(6), 1205.
4 Daniela S R, Malaescu I, Marinica O, et al. Physica B: Physics of Condensed Matter, 2020, 587, 412150.
5 Bai L F, Pei L, Cao S S, et al. Journal of Magnetism and Magnetic Materials, 2020, 505, 166734.
6 Gong F, Wu Z Y, Zhu Q C, et al. Materials Reports, 2019, 33(S1), 126(in Chinese).
恭飞, 吴张永, 朱启晨, 等.材料导报, 2019, 33(S1), 126.
7 Zhang X N, Xia X R, Xiang Z, et al. Journal of Xi'an Jiaotong University, 2019, 53(2), 1(in Chinese).
张西宁, 夏心锐, 向宙, 等.西安交通大学学报, 2019, 53(2), 1.
8 Choi S B, Li W H, Yu M, et al. Smart Materials & Structures, 2016, 25(4), 43001.
9 Rankin P J, Horvath A T, Klingenberg D J. Rheologica Acta, 1999, 38(5), 471.
10 Wang H X, Zhang G, Ouyang Q, et al. Journal of Shanghai Jiaotong University, 2019, 53 (3), 380(in Chinese).
汪辉兴, 张广, 欧阳青, 等.上海交通大学学报, 2019, 53(3), 380.
11 Karis T E, Kono R N, Jhon M S. Journal of Applied Polymer Science, 2003, 90(2), 334.
12 Kintz A K, Carlson J D, Munoz B C, et al. U.S. patent, US6547986B1, 2003.
13 Wang K J, Dong X M, Li J L, et al. Results in Physics, 2020, 18, 103328.
14 He G T, Liao C R, Wang P, et al. Journal of Functional Materials, 2011, 42(9), 1694(in Chinese).
何国田, 廖昌荣, 王平, 等.功能材料, 2011, 42(9), 1694.
15 Mohamad N, Mazlan S A, Ubaidillah, et al. Smart Material Structures, 2016, 25(9), 10.
16 Mohamad N, Ubaidillah, Mazlan S A, et al. Plos One, 2018, 13(4), 191795.
17 Mohamad N, Mazlan S A, Ubaidillah, et al. Journal of Intelligent Mate-rial Systems and Structures, 2019, 30(5), 788.
18 Mohamad N, Ubaidillah, Mazlan S A, et al. International Journal of Molecular Sciences, 2019, 20(7),1525.
19 Hu Z D, Yan H, Wang X M, et al. Journal of Functional Materials, 2014, 45(21), 21045(in Chinese).
胡志德, 晏华, 王雪梅, 等.功能材料, 2014, 45(21), 21045.
20 Hu Z D, Yan H, Wang X M, et al. Journal of Functional Materials, 2015, 46(2), 2105(in Chinese).
胡志德, 晏华, 王雪梅, 等.功能材料, 2015, 46(2), 2105.
21 Hu Z D, Yan H, Wang X M, et al. Journal of Functional Materials, 2014, 45(24), 24082(in Chinese).
胡志德, 晏华, 王雪梅, 等.功能材料, 2014, 45(24), 24082.
22 Hu Z D, Yan H, Guo X C, et al. Acta Petrolei Sinica(Petroleum Proce-ssing Section), 2015, 31(1), 166(in Chinese).
胡志德, 晏华, 郭小川, 等.石油学报(石油加工), 2015, 31(1), 166.
23 Wang K J, Dong X M, Li J L, et al. Materials, 2019, 12(11), 1778.
24 Cao S, Pan J B. Lubrication Engineering, 2016, 41(8), 102(in Chinese).
曹帅, 潘家保. 润滑与密封, 2016, 41(8), 102.
25 Yao L D, Yang H N, Sun H W, et al. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(S1), 1(in Chinese).
姚立丹, 杨海宁, 孙洪伟, 等.石油学报(石油加工), 2011, 27(S1), 1.
26 Pan J B, Cheng Y H, Zhu Z C, et al. CIESC Journal, 2014, 65(6), 2063(in Chinese).
潘家保, 程延海, 朱真才, 等.化工学报, 2014, 65(6), 2063.
27 Sahin H, Gordaninejad F, Wang X J, et al. Active & Passive Smart Structures & Integrated Systems, 2007, 6525(16), 65250D.
28 Zhao H J, Hu Z D, Wang D W, et al. Journal of Functional Materials, 2020, 51(4), 4096(in Chinese).
赵湖钧, 胡志德, 王大伟, 等.功能材料, 2020, 51(4), 4096.
29 Ye X D, Wang J, Huang X G. Journal of Hunan University(Natural Sciences), 2020, 47(4), 49(in Chinese).
叶绪丹, 王炅, 黄学功.湖南大学学报(自然科学版), 2020, 47(4), 49.
30 Wang H X, Zhang G, Wang J. RSC Advances, 2019, 9(47), 27167.
31 Pan J B, Qian M, Zhou B, et al. Lubrication Engineering, 2018, 43(6), 128(in Chinese).
潘家保, 钱明, 周彬, 等. 润滑与密封, 2018, 43(6), 128.
32 Pan J B, Cheng Y H, Qian M, et al. Chemical Industry and Engineering Progress, 2018, 37(4), 1509(in Chinese).
潘家保, 程延海, 钱明, 等. 化工进展, 2018, 37(4), 1509.
33 He G T, Liao C R, Deng S G, et al. Journal of Functional Materials, 2011, 42(3), 550(in Chinese).
何国田, 廖昌荣, 邓绍更, 等.功能材料, 2011, 42(3), 550.
34 Yang G X, Pan J B, Zhou L J, et al. Chemical Industry and Engineering Progress, 2021, 40(8), 4428(in Chinese).
杨广鑫, 潘家保, 周陆俊, 等.化工进展, 2021, 40(8), 4428.
35 Cao L, Feng Z M. Modern Scientific Instruments, 2009(6), 27(in Chinese).
曹磊, 冯志敏.现代科学仪器, 2009(6), 27.
36 Zhang X C, Wu G B, Zhao J. Journal of Civil and Environmental Engineering, 2020, 42(3), 46(in Chinese).
张香成, 毋贵斌, 赵军.土木与环境工程学报, 2020, 42(3), 46.
37 Liu P F, Ma L Q, Wang B, et al. Bridge Construction, 2018, 48(4),51(in Chinese).
刘鹏飞, 马伦权, 王波, 等.桥梁建设, 2018, 48(4), 51.
38 Xin D K, Nie S L, Ji H, et al. Transactions of Beijing Institute of Technology, 2019, 39(12), 1252(in Chinese).
辛德奎, 聂松林, 纪辉, 等.北京理工大学学报, 2019, 39(12), 1252.
39 Yu J Q, Dong X M, Wang X H, et al. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(9), 2402.
40 Zhang X J, Yang Y, Guo K H, et al. Smart Materials and Structures, 2020, 29(4), 045006.
41 Hu G L, Yi F, Liu H, et al. Journal of Vibration Engineering & Techno-logies, 2020, 9(1), 85.
42 Zhang G, Wang H X, Wang J. Journal of Vibration and Shock, 2019, 38(20), 172.
张广, 汪辉兴, 王炅.振动与冲击, 2019, 38(20), 172(in Chinese).
43 Sheng P C, Wang X Z, Jian X C, et al. Machinery Design & Manufacture, 2011, 12, 237(in Chinese).
盛鹏程, 王秀贞, 简晓春, 等.机械设计与制造, 2011, 12, 237.
44 Min F, Sun L, Wang L W, et al. Journal of Chongqing University of Technology(Natural Science), 2012, 26(6), 13(in Chinese).
闵峰, 孙亮, 王利伟, 等.重庆理工大学学报(自然科学), 2012, 26(6), 13.
45 Zhu C S. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9), 793.
46 Tian Z Z, Hou Y F, Wang N N. Journal of Functional Materials, 2011, 42(11), 1962(in Chinese).
田祖织, 侯友夫, 王囡囡.功能材料, 2011, 42(11), 1962.
47 Zeng Y S, Wang D M, Gao W Z. Chinese Hydraulics &Pneumatics, 2016(8), 1(in Chinese).
曾亿山, 王道明, 高文智.液压与气动, 2016(8), 1.
48 Zheng J J, Li Y C, Hu M, et al. Smart Materials and Structures, 2018, 27(11), 115030.
49 Lin Z H, Hu G Q, Liu W Y, et al. Journal of Xiamen University(Natural Science), 2004(S1), 369(in Chinese).
林忠华, 胡国清, 刘文艳, 等.厦门大学学报(自然科学版), 2004(S1), 369.
50 Li Q L, Li X J, Xie M X, et al. Journal of Functional Materials, 2006(5), 754(in Chinese).
李全禄, 李晓娟, 解妙霞, 等.功能材料, 2006(5), 754.
51 Dai J, Chang H, Zhao R, et al. Mechanical Systems and Signal Pro-cessing, 2019, 116, 741.
52 Gordaninejad F, Kavlicoglu B M, Wang X J. Active and Passive Smart Structures and Integrated Systems, 2007, 6525, 65250C.
53 Hu G L, Zhang J W, Yu L F, et al. Transactions of Beijing Institute of Technology, 2019, 39(11), 1118(in Chinese).
胡国良, 张佳伟, 喻理梵, 等.北京理工大学学报, 2019, 39(11), 1118.
54 Hu G L, Zheng K Y. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10), 401(in Chinese).
胡国良, 郑凯阳.农业机械学报, 2019, 50(10), 401.
55 Imaduddin F, Mazlan S A, Zamzuri H, et al. Journal of Intelligent Mate-rial Systems and Structures, 2015, 26(9), 1038.
56 Pan J B, Cheng Y H, Cao S, et al. Journal of Engineering Thermophy-sics, 2015, 36(7),1563(in Chinese).
潘家保, 程延海, 曹帅, 等.工程热物理学报, 2015, 36(7), 1563.
57 Wang H X, Li Y C, Zhang G, et al. Smart Materials and Structures, 2018, 28(3), 035002.
58 Zheng J J, Li Y C, Wang J, et al. Materials Research Express, 2018, 5(8), 085702.
59 Hemmatian M, Sedaghati R, Rakheja S. Journal of Magnetism and Magnetic Materials, 2019, 498, 166109.
60 Bahiuddin I, Wahab N A, Shapiai M I, et al. Journal of Intelligent Material Systems and Structures, 2019, 30(11), 1727.
61 Peng Y B, Zhang Z K. Journal of Engineering Mechanics, 2020, 146(6), 04020045.
62 Pan J B, Yang G X, Wang J P. Materials Research Express, 2020, 7(3), 035509.
63 Sánchez M C, Franco J M, Valencia C, et al. Tribology Letters, 2011, 41(2), 463.
[1] 潘一, 徐明磊, 郭奇, 廖广志, 杨双春, Kantoma Daniel Bala. 钻井液智能堵漏材料研究进展[J]. 材料导报, 2021, 35(9): 9223-9230.
[2] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[3] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[4] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[5] 李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
[6] 陈龙飞, 游世辉, 赵小英. 二维声子晶体薄板隔声特性研究[J]. 材料导报, 2020, 34(Z1): 90-93.
[7] 王弘义, 罗一平, 纪东升, 陈亚蒙. 基于赫兹接触理论的磁流变液电阻计算方法[J]. 材料导报, 2020, 34(Z1): 486-489.
[8] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[9] 于丽, 卞永宁, 刘杨, 徐新生. 低浓度水基多壁碳纳米管纳米流体的流变特性[J]. 材料导报, 2020, 34(22): 22010-22014.
[10] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[11] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[12] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[15] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed