Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21030323-6    https://doi.org/10.11896/cldb.21030323
  金属与金属基复合材料 |
国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究
李阳1, 蔡长春1, 余欢1,*, 徐志锋1, 王振军1, 张永刚2, 钱鑫2, 钟俊俊2
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063
2 中国科学院宁波材料技术与工程研究所碳纤维制备技术国家工程实验室,浙江 宁波 315201
Investigation on Microstructure and Tensile Properties of Domestic M50J Carbon Fiber/Aluminum Matrix Composites
LI Yang1, CAI Changchun1, YU Huan1,*, XU Zhifeng1, WANG Zhenjun1, ZHANG Yonggang2, QIAN Xin2, ZHONG Junjun2
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,Nanchang 330063,China
2 National Engineering Laboratory of Carbon Fiber Preparation Technology,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
下载:  全 文 ( PDF ) ( 13315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯腈(PAN)基碳纤维因具有高强高模的特性而在众多领域被广泛使用。近年来,我国高性能碳纤维的制备技术取得了较大突破,为促进国产高性能碳纤维在铝基复合材料领域的实际工程应用,本工作以国内研制的M50J碳纤维为增强体材料,选用ZL301为基体合金,采用真空压力浸渗法制备了纤维体积分数为45%的单向连续M50J/Al复合材料。研究了该工艺条件下M50J/Al复合材料的微观组织和界面反应程度及其在室温、350 ℃下的拉伸性能。结果表明:M50J/Al复合材料的平均致密度为98.86%,碳纤维在复合材料中的分布较为均匀,在基体合金中未发现明显的缩孔缩松现象,复合材料主要由C、Al以及少量Al3Mg2和Al4C3相组成,M50J与ZL301基体在界面处出现反应产物,应为脆性离子碳化物Al4C3,其尺寸较小,呈细杆状;复合材料在室温及350 ℃下的平均拉伸强度分别为856 MPa和774.7 MPa,平均拉伸模量分别为204.3 GPa和197.3 GPa,从复合材料中萃取出的M50J碳纤维单丝的平均拉伸强度和模量分别为3 280 MPa、447 GPa,与铝合金复合后纤维丝强度发生一定程度的下降,界面结合和微观缺陷是影响复合材料拉伸性能的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李阳
蔡长春
余欢
徐志锋
王振军
张永刚
钱鑫
钟俊俊
关键词:  国产碳纤维  Cf/Al复合材料  拉伸性能  微观组织  真空压力浸渗    
Abstract: Polyacrylonitrile (PAN)-based carbon fiber is widely used in many engineering fields owingto its high strength and high modulus. In recent years, great breakthroughs have been made in the preparation technology of high-modulus carbon fibers in China. In order to promote the application of high-modulus carbon fiber in aluminum matrix composites, in this paper, domestic carbon fiber M50J(volume fraction of 45%) was used to fabricate unidirectional M50J/Al composites by using vacuum pressure infiltration method. The microstructure, interfacial reaction of M50J/Al composites were investigated, and uniaxial tensile testing was carried out to test its mechanical properties at room and elevated temperature (350 ℃). The results show that the average relative density of the composite is 98.86%. The arrangement of M50J carbon fiber is homogenous and the cross-section of fiber is regularly circular. No microscopic shrinkage cavity or porosity was found in the matrix alloy. The composites are mainly composed of C, Al, and a small amount of Al3Mg2 and Al4C3 phases. The reaction product appears at the interface between M50J and ZL301 matrix, which was identified as brittle ionic carbide Al4C3 phase, which exhibits a gracile rod shape with small size. At room temperature, the average tensile strength and modulus of the composites are 856 MPa and 204.3 GPa. At the elevated temperature (350 ℃), the average tensile strength and modulus are 774.7 MPa and 197.3 GPa, respectively. The average tensile strength and modulus of M50J carbon fiber that extracted from the composite are 3 280 MPa and 447 GPa, respectively. Compared with the original carbon fiber, the fiber strength and modulus in composites decreases slightly. The interface bonding and micro defects are the main factors that influence the tensile properties of the composite.
Key words:  domestic carbon fiber    Cf/Al composites    tensile property    microstructure    vacuum-assisted pressure infiltration
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51765045);江西省自然科学基金(20202ACBL204010);航空科学基金(2019ZF056013)
通讯作者:  * yuhwan@163.com   
作者简介:  李阳,南昌航空大学硕士研究生,2017年本科毕业于南昌航空大学,获得工学学士学位,2018年9月至今于南昌航空大学航空制造工程学院学习,主要从事碳纤维增强铝基复合材料的制备及室温、高温性能的研究。
余欢,南昌航空大学教授、博士研究生导师,1982年本科毕业于西北工业大学铸造专业,获得工学学士学位;1995年硕士毕业于西北工业大学铸造专业,获工学硕士学位;2000年博士毕业于西北工业大学材料加工工程专业,获工学博士学位。发表学术论文80余篇,其中SCI、EI收录20余篇。长期从事铸造技术、工程化的教学和金属基复合材料科研工作。目前主要研究方向为大型复杂轻合金薄壁铸件的精密成形理论及工艺。
引用本文:    
李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
LI Yang, CAI Changchun, YU Huan, XU Zhifeng, WANG Zhenjun, ZHANG Yonggang, QIAN Xin, ZHONG Junjun. Investigation on Microstructure and Tensile Properties of Domestic M50J Carbon Fiber/Aluminum Matrix Composites. Materials Reports, 2022, 36(21): 21030323-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030323  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21030323
1 Chen L, Zhao M, Wang Z T. Light Alloy Fabrication Technology, 2020, 48(2),1(in Chinese).
陈雷, 赵曼, 王祝堂. 轻合金加工技术, 2020, 48(2),1.
2 Wang H P, Gao L F, Li X L. New Chemical Materials, 2020, 48(9),20(in Chinese).
王浩攀, 高令飞, 李学林. 化工新型材料, 2020, 48(9),20.
3 Zou C H. Effects of preheating temperature on microstructure and properties of continuous Cf/Al composites. Master's Thesis, Nanchang Hangkong University, China, 2013 (in Chinese).
邹春红.预热温度对连续Cf/Al复合材料组织与性能的影响. 硕士学位论文, 南昌航空大学, 2013.
4 Feng J P, Yu H, Xu Z F, et al. Special-cast and Non-ferrous Alloys, 2020, 40(2),202(in Chinese).
冯景鹏, 余欢, 徐志锋, 等. 特种铸造及有色合金, 2020, 40(2),202.
5 Shuai L, Yu H, Xu Z F, et al. Materials Reports B: Research Papers, 2020, 34(10),20137(in Chinese).
帅亮, 余欢, 徐志锋, 等. 材料导报:研究篇, 1020, 34(10),20137.
6 Xiao H, Chen P, Liu H S, et al. Acta Materiae Compositae Sinica, 2021, 38(8),1(in Chinese).
肖何, 陈藩, 刘寒松, 等. 复合材料学报, 2021, 38(8),1.
7 Li G L, Peng G Q, Zhong X Y. Journal of Materials Engineering, 2020, 48(10),74(in Chinese).
李国丽, 彭公秋, 钟翔屿. 材料工程, 2020, 48(10),74.
8 Zhang F, Yin Y X, Xia Y W. Aerospace Materials and Technology, 2019, 49(6),33(in Chinese).
张芳, 殷永霞, 夏英伟.宇航材料工艺, 2019, 49(6),33.
9 Zhi J H, Qian X, Zhang Y G, et al. China Synthetic Fiber Industry, 2018, 41(4),14(in Chinese).
支建海, 钱鑫, 张永刚, 等. 合成纤维工业, 2018, 41(4),14.
10 Wang X, Jiang D M, Wu G H, et al. Materials Science and Engineering A, 2008, 497(1-2),31.
11 Hu Y S, Yin J X, Yu H, et al. Special-cast and Non-ferrous Alloys, 2018(10),1100(in Chinese).
胡银生, 尹家新, 余欢, 等.特种铸造及有色合金, 2018(10),1100.
12 Nie M M, Xu Z F, Xu P, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(5),1001(in Chinese).
聂明明, 徐志锋, 徐鹏, 等.中国有色金属学报, 2016, 26(5),1001.
13 Chen C J, Zhang M, Wang C H, et al. Fiber Reinforced Plastics/Compo-sites, 2012(S1),73(in Chinese).
陈淙洁, 张明, 王春红, 等. 玻璃钢/复合材料, 2012(S1),73.
14 Liu F J, Wang H J, Fan L D, et al. New Chemical Materials, 2009, 37(1), 41(in Chinese).
刘福杰, 王浩静, 范立东, 等.化工新型材料, 2009, 37(1), 41.
15 Zhou J Q, Wang Z J, Yang S Y, et al. Acta Materiae Compositae Sinica, 2020, 37(4), 907(in Chinese).
周金秋, 王振军, 杨思远, 等. 复合材料学报, 2020, 37(4), 907.
16 Zhang A D. Research on microscopic damage and fracture behavior of CF/Al composites under axial tensile load considering thermal residual stress. Master's Thesis, Nanchang Hangkong University, China, 2020 (in Chinese).
张奥迪. 考虑热残余应力的CF/Al复合材料轴向拉伸细观损伤与断裂力学行为研究. 硕士学位论文, 南昌航空大学, 2020.
17 Wang W G, Xiao B L, Ma Z Y. Composites Science and Technology, 2011, 72(2), 152.
18 Liu G J, Zhang H, Lin G Y, et al. Hot Working Technology, 2002(6),13(in Chinese).
刘国金, 张辉, 林高用, 等.热加工工艺, 2002(6),13.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[4] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[5] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[6] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[7] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[8] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[9] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[10] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[11] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[12] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[13] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[14] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[15] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed