Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21050132-7    https://doi.org/10.11896/cldb.21050132
  金属与金属基复合材料 |
控制挤压比制备的AZ91异构镁合金的组织与力学性能
刘珂1,2, 张宝煊1,2, 黄光胜1,2,*, 蒋斌1,2, 汤爱涛1,2, 潘复生1,2
1 重庆大学材料科学与工程学院,机械传动国家重点实验室,重庆 400044
2 重庆大学国家镁合金工程技术研究中心,重庆 400044
Microstructure and Mechanical Properties of Heterogeneous AZ91 Magnesium Alloy Prepared by Controlling Extrusion Ratio
LIU Ke1,2, ZHANG Baoxuan1,2, HUANG Guangsheng1,2,*, JIANG Bin1,2, TANG Aitao1,2, PAN Fusheng1,2
1 State Key Laboratory of Mechanical Transmission, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 10638KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以商业热轧态AZ91厚板为实验用材料,通过控制挤压比制备了具有异质结构和均匀结构的AZ91棒材,采用光学显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)及万能试验机研究了其微观组织与拉伸性能。结果表明:相比于原始热轧态(R)和轧制退火态(RA),挤压后的合金(AE7、AE11、AE17和AE26,数字为挤压比)的强度和塑性均大幅提高。其中,AE7为晶粒较为细小的均匀组织,并具有最高的抗拉强度及屈服强度,但塑性最差;而AE26则呈现晶粒较为粗大的均匀组织,并具有最佳的塑性,但强度最低;AE11和AE17则呈现粗、细晶混合的异质结构,其中AE11表现最佳的强韧结合,这不仅归因于细晶强化和晶粒的硬取向,而且异质变形诱导(HDI)强化和硬化在变形过程中也扮演了重要角色。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘珂
张宝煊
黄光胜
蒋斌
汤爱涛
潘复生
关键词:  镁合金  微观组织  异质结构  异质变形诱导(HDI)强化  力学性能    
Abstract: AZ91 bars with heterogeneous or uniform structure were prepared by controlling the extrusion ratio, using commercial hot-rolled AZ91 as experimental materials. The microstructure and tensile properties of the bars were studied by optical microscope (OM), scanning electron microscope (SEM), electron backscattering diffraction (EBSD) and universal testing machine. The results show that the strength and ductility of the extruded alloy (AE7, AE11, AE17 and AE26) are significantly improved, compared with the original rolled (R) and rolled annealed (RA) alloy. In addition, AE7 presents a uniform fine-grain structure with the highest strength but the worst ductility, while AE26 obtains a uniform coarse-grain structure with the highest ductility but the lowest strength. Differently, AE11 and AE17 show heterogeneous structure with a mixture of coarse and fine grains, and AE11 has the best combination of strength and ductility, which is not only attributed to the fine grain strengthening and hard orientation of grains. Also, the heterogeneous deformation induced (HDI) strengthening plays an important role in the deformation process.
Key words:  magnesium alloy    microstructure    heterostructure    heterogeneous deformation induced (HDI) strengthening    mechanical property
发布日期:  2022-10-26
ZTFLH:  TG379  
基金资助: 国家自然科学基金(52071035;U1764253)
通讯作者:  *gshuang@cqu.edu.cn   
作者简介:  刘珂,硕士研究生,2018年6月毕业于重庆交通大学材料科学与工程专业。2018年9月进入重庆大学材料科学与工程学院学习。主要从事镁合金材料的研究。
黄光胜,重庆大学教授、博士研究生导师。2003年6月,获得重庆大学材料加工工程专业工学博士学位。长期致力于镁合金等轻金属材料的研究,主要开展镁合金塑性成形理论与加工新技术方向的研究。参加了国家重点研发计划、国家自然科学基金、国家863高科技计划、国家科技攻关、重庆市重大攻关项目等20余项项目。发表学术论文150余篇,其中SCI/EI收录120余篇。授权发明专利14项。
引用本文:    
刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
LIU Ke, ZHANG Baoxuan, HUANG Guangsheng, JIANG Bin, TANG Aitao, PAN Fusheng. Microstructure and Mechanical Properties of Heterogeneous AZ91 Magnesium Alloy Prepared by Controlling Extrusion Ratio. Materials Reports, 2022, 36(20): 21050132-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050132  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21050132
1 Wang X J, Xu D K, Wu R Z, et al. Journal of Materials Science & Technology, 2017, 34(2), 245.
2 Yang Z Q, Ma A B, Liu H, et al. Materials Characterization, 2019, 152, 213.
3 Wang X L, Li X L, Hong X L, et al. Sichuan Metallurgy, 2020, 42(5), 5(in Chinese).
王小兰, 李秀兰, 洪小龙, 等. 四川冶金, 2020, 42(5), 5.
4 Fan Z Z, Chen J Z, Lu Z, et al. Foundry, 2020, 69(10), 1016(in Chinese).
樊振中, 陈军洲, 陆政, 等. 铸造, 2020, 69(10), 1016.
5 Li F, Guan R G, Tie D, et al. Strategic Study of CAE, 2020, 22(5), 76(in Chinese).
李芳, 管仁国, 铁镝, 等. 中国工程科学, 2020, 22(5), 76.
6 Ren L B, Fan L L, Zhou M Y, et al. International Journal of Lightweight Materials and Manufacture, 2018, 3,34.
7 Imandousta A, Barrett C D, Al-Samman T, et al. Journal of Materials Science, 2017, 52(1), 1.
8 Liu X, Zhu B W, Wu Z Y, et al. The Chinese Journal of Nonferrous Me-tals, 2019, 29(2), 232(in Chinese).
刘筱, 朱必武, 吴远志, 等. 中国有色金属学报,2019,29(2),232.
9 Han T Z. Study on microstructure control of AZ31B magnesium alloy sheet and its mechanical properties. Ph.D. Thesis, Chongqing University, China, 2018(in Chinese).
韩廷状. AZ31B镁合金板材组织控制及力学性能研究. 博士学位论文, 重庆大学, 2018.
10 Yan L P, Li Q A, Chen X Y. Transactions of Materials and Heat Treatment, 2019, 40(3), 20(in Chinese).
兖利鹏, 李全安, 陈晓亚. 材料热处理学报, 2019, 40(3), 20.
11 Chen B, Lin D L, Jin L, et al. Materials Science and Engineering A, 2008, 483-484, 113.
12 Fang T H, Li W, Tao N R, et al. Science, 2011, 331(6024), 1587.
13 Sabirov I, Estrin Y, Barnett M R,et al. Acta Materialia, 2008, 56(10), 2223.
14 Wei Y J, Li Y Q, Zhu L C, et al. Nature Communications, 2014, 5,1.
15 Zhu Y T, Ameyama K, Anderson P M, et al. Materials Research Letters, 2021, 9(1), 1.
16 Zhu Y T, Wu X L. Materials Research Letters, 2019, 7(10), 393.
17 Wu X L, Yang M X, Yuan F P, et al. Proceeding of the National Academy of Science, 2015, 112(47), 14501.
18 Ma X L, Huang C X, Moering J, et al. Acta Materialia, 2016, 116, 43.
19 Wu X L, Jiang P, Chen L, et al. Proceeding of the National Academy of Science, 2014, 111(20), 7197.
20 Wu X L, Jiang P, Chen L, et al. Materials Research Letters, 2014, 2(4), 185.
21 Wu X L, Yang M X, Yuan F P, et al. Acta Materialia,2016,112,337.
22 Liu S S, Zhang J L, Chen X, et al. Materials Science & Engineering A, 2020, 785,405.
23 Ding H L, Liu L F, Kamado S, et al. Journal of Alloys and Compounds, 2008, 456(1-2), 400.
24 Chen L, Liang M C, Zhao G Q, et al. Vacuum, 2018, 150,136.
25 Wang H Y, Yu Z P, Zhang L, et al. Scientific Reports, 2015, 5(1),9.
26 Koike J, Kobayashi T, Mukai T, et al. Acta Materialia, 2003, 51(7), 2055.
27 Wang G G, Huang G S, Chen X, et al. Materials Science & Engineering A, 2017, 705, 46.
28 Yang M X, Pan Y, Yuan F P, et al. Materials Research Letters, 2016, 4(3), 145.
29 Huang C X, Wang Y F, Ma X L, et al. Materials Today, 2018, 21(7), 713.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[11] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[12] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[13] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[14] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed