Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21070247-6    https://doi.org/10.11896/cldb.21070247
  高分子与聚合物基复合材料 |
基于PDMS的蘑菇状仿生黏附微阵列新型制造方法
赵泽芳, 何青松*, 张昊, 于敏, 陆吉, 田成博, 潘辉
南京航空航天大学机电学院,江苏省仿生功能材料重点实验室,南京 200016
Novel Fabrication Method of Mushroom-shaped Bioinspired Adhesive Microstructure Based on PDMS
ZHAO Zefang, HE Qingsong*, ZHANG Hao, YU Min, LU Ji, TIAN Chengbo, PAN Hui
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Jiangsu Key Laboratory of Bionic Functional Materials, Nanjing 200016
下载:  全 文 ( PDF ) ( 8032KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受到自然界中壁虎和甲虫脚趾表面微纳纤毛结构的启发,本工作基于聚二甲基硅氧烷(PDMS)提出了一种表面具有蘑菇状微阵列的仿生干黏附材料制造方法,通过进给实验装置对传统支柱状仿生干黏附材料进行“蘸取”,实现了表面蘑菇状微阵列的制造。蘑菇状仿生干黏附材料单根纤维的黏附面积为1.12 ×10-3 mm2,最大切向黏附强度为2.65 N/cm2,法向黏附强度为5.18 N/cm2。与手工制造方式相比,黏附面积提升了33.74%,黏附强度最大分别提升了225%、280%。结合SEM图、光学显微图、黏附材料与黏附接触面的接触状态和黏着功进行黏附性能的理论分析。利用这一方法,蘑菇状仿生干黏附材料的黏着角减小,微阵列的末端直径、表面平整度、有效黏着功、黏附面积和柔顺性显著提升,材料能够更好地适应接触面,且具有较好的重复性,显著提高了材料的切向和法向黏附强度。本工作为蘑菇状仿生干黏附材料的制造提供了一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵泽芳
何青松
张昊
于敏
陆吉
田成博
潘辉
关键词:  仿生  干黏附材料  蘑菇状微阵列  有效黏着功    
Abstract: Inspired by the micro-nano ciliary structures on the toes of geckos and beetles in nature, a kind of biomimetic dry adhesive with mushroom-shaped microarray composed of polydimethylsiloxane(PDMS)was “dipped” and fabricated by a feeding experimental device. The contact area of a single fiber of the mushroom-shaped bionic dry adhesive is 1.12×10-3 mm2, the maximum shear adhesion strength is up to 2.65 N/cm2, and the maximum normal adhesion strength is 5.18 N/cm2. Compared with manual manufacturing, the adhesion area increased by 33.74%, and the shear and normal adhesion strength increased by 225% and 280% respectively. Considering the SEM images, optical micrograph, adhesive state and adhesion work between adhesive and contact surface, the adhesion performance was conducted by theoretical analysis. By this method, the adhesion angle of the mushroom-shaped biomimetic dry adhesive was reduced, and the diameter, flatness, effective adhesion work, adhesion area, and flexibility of the microarray were significantly improved. The adhesive could better adapt to the contact surface with good repeatability and significantly improve the shear and normal adhesive strength. This work provides a novel idea for manufacturing mushroom-shaped biomimetic dry adhesive.
Key words:  biomimetic    dry adhesive    mushroom-shaped microarray    effective adhesion work
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TH111  
基金资助: 国家自然科学基金(51605220; U1637101);中央高校基本科研业务费专项资金(NS2020029)
通讯作者:  *何青松,南京航空航天大学机电学院研究员。获南京航空航天大学机械设计及理论博士学位,主要研究兴趣为仿生智能驱动及机器人、生物微纳制造与系统、柔性传感与电子监测设备,在Composites Part A、《科学通报》等国内外重要期刊上共发表学术论文60余篇。heqingsong@nuaa.edu.cn   
作者简介:  赵泽芳,东北林业大学工程技术学院森林工程专业工学学士,南京航空航天大学机电学院机械工程专业硕士,主要从事仿生微纳米制造领域的研究。
引用本文:    
赵泽芳, 何青松, 张昊, 于敏, 陆吉, 田成博, 潘辉. 基于PDMS的蘑菇状仿生黏附微阵列新型制造方法[J]. 材料导报, 2023, 37(5): 21070247-6.
ZHAO Zefang, HE Qingsong, ZHANG Hao, YU Min, LU Ji, TIAN Chengbo, PAN Hui. Novel Fabrication Method of Mushroom-shaped Bioinspired Adhesive Microstructure Based on PDMS. Materials Reports, 2023, 37(5): 21070247-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070247  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21070247
1 Alberts B,Johnson A,Lewis J,et al. Molecular biology of the cell. Garland Science,USA,2008,pp. 12.
2 Langer M G,Ruppersberg J P,Gorb S. Proceedings of the Royal Society of London Series B:Biological Sciences,2004,271(1554),2209.
3 Endlein T,Federle W. PLoS ONE,2015,10(11),e0141269.
4 Huber G,Mantz H,Spolenak R,et al. Proceedings of the National Academy of Sciences,2005,102(45),16293.
5 Autumn K,Sitti M,Liang Y A,et al. Proceedings of the National Academy of Sciences,2002,99(19),12252.
6 Pelletier Y,Smilowitz Z. The Canadian Entomologist, 1987,119(12),1139.
7 Autumn K,Liang Y A,Hsie S T,et al. Nature,2000,405(6787),681.
8 Gorb S N. Attachment devices of insect cuticle,Springer,USA,2001,pp. 37.
9 Xu M,Du F,Ganguli S,et al. Nature Communications,2016,7(1),1.
10 Lu M Y,He Q S,Li Y,et al. Carbon,2019,142,592.
11 Tao D S,Gao X,Lu H Y,et al. Advanced Functional Materials,2017,27(22),1606576.
12 Varenberg M,Gorb S. Journal of the Royal Society Interface,2008,5(20),383.
13 Hu H,Tian H M,Shao J Y,et al. ACS Applied Materials & Interfaces,2017,9(8),7752.
14 Kim T,Park J,Sohn J,et al. ACS Nano,2016,10(4),4770.
15 Wang Y,Hu H,Shao J Y,et al. ACS Applied Materials & Interfaces,2014,6(4),2213.
16 Greiner C,Del Campo A,Arzt E. Langmuir,2007,23(7),3495.
17 Kizilkan E,Strueben J,Staubitz A,et al. Science Robotics,2017,2(2),1.
18 Zhang Y L,Ma S H,Li B,et al. Chemistry of Materials,2021,33(8),2785.
19 Li S,Tian H M,Shao J Y,et al. ACS Applied Materials & Interfaces,2020,12(35),39745.
20 Hu H,Tian H M,Shao J Y,et al. Advanced Materials Interfaces,2017,4(9),1700016.
21 Gorb S,Varenberg M,Peressadko A,et al. Journal of the Royal Society Interface,2007,4(13),271.
22 Li X S,Tao D S,Lu H Y,et al. Surface Topography:Metrology and Pro-perties,2019,7(2),023001.
23 Yi H,Kang M,Kwak M K,et al. ACS Applied Materials & Interfaces,2016,8(34),22671.
24 Sameoto D,Sharif H,Menon C. Journal of Adhesion Science and Technology, 2012,26(23),2641.
25 Isla P Y,Kroner E. Advanced Functional Materials,2015,25(16),2444.
26 Drotlef D M,Dayan C B,Sitti M. Integrative and Comparative Biology,2019,59(1),227.
27 He Q S,Xu X R,Yu Z W,et al. Journal of Bionic Engineering,2020,17(1),45.
28 何青松,于敏,赵泽芳,等. 中国专利,CN113148944A,2021.
29 Purtov J,Frensemeier M,Kroner E. ACS Applied Materials & Interfaces,2015,7(43),24127.
30 Maugis D,Cardona M,Fulde P,et al. Contact,adhesion and rupture of elastic solids,Springer,Germany,2000,pp. 28.
31 Aksak B,Murphy M P,Sitti M. Langmuir,2007,23(6),3322.
32 Bartlett M D,Croll A B,Crosby A J. Advanced Functional Materials,2012,22(23),4985.
33 Bartlett M D,Croll A B,King D R,et al. Advanced Materials,2012,24(8),1078.
[1] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[2] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[3] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[4] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[5] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[6] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[7] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[8] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[9] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[10] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[11] 孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
[12] 胡海豹, 曹刚, 张梦卓, 杜鹏, 黄潇. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193.
[13] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[14] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[15] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed