Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080071-11    https://doi.org/10.11896/cldb.20080071
  高分子与聚合物基复合材料 |
仿生固态纳米孔在生物传感中的应用进展
肖萍萍, 张国军, 孙忠月
湖北中医药大学检验学院,武汉 430065
Application Progress of Biomimetic Solid-state Nanopores in Biosensing
XIAO Pingping, ZHANG Guojun, SUN Zhongyue
School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
下载:  全 文 ( PDF ) ( 9968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 仿生固态纳米孔的设计灵感来源于生物离子通道,它不仅具有生物离子通道的性能,同时具有良好的加工性能和可控的表面化学性能,克服了生物离子通道的性能仅存在于活的细胞膜中的问题,具有广阔的应用前景。仿生固态纳米孔作为生物传感器的电学转化元件实现了对纳米尺度物体的分析能力,与传统的生物分子检测方法相比,基于仿生固态纳米孔的生物传感器具有微型化、灵敏度和特异性高、分析速度快、免标记、操作简单等显著的优点,对医学、分析生物化学和生物技术起着至关重要的作用。本文阐述了近年来仿生固态纳米孔在生物传感方面的研究进展,并对其发展前景及面临的挑战进行了讨论
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖萍萍
张国军
孙忠月
关键词:  仿生  固态纳米孔  生物传感  离子电流    
Abstract: The design of biomimetic solid-state nanopores is inspired by biological ion channels. It not only has the performance of biological ion channels, but also has good processing performance and controllable surface chemical properties. It overcomes the problem that the properties of biological ion channels only exist in living cell membranes, and has a broad application prospect. Biomimetic solid-state nanopores, as the electrical conversion element of biosensors, have realized the ability to analyze nano-scale objects. Compared with traditional biomolecule detection methods, biosensors based on biomimetic solid-state nanopores have miniaturization, high sensitivity and specificity, fast analysis speed, label-free, and simple operation. It plays a vital role in medicine, analytical biochemistry and biotechnology. This article describes the research progress of biomimetic solid-state nanopores in biosensing in recent years, and discusses its development prospects and challenges.
Key words:  bionic    solid nanopores    biosensors    ion current
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  R446.9  
通讯作者:  shui10123@aliyun.com   
作者简介:  肖萍萍,湖北中医药大学,硕士研究生。2018年毕业于湖北中医药大学,获得理学学士学位。主要从事临床检验诊断学研究。
孙忠月,湖北中医药大学副教授。2013年毕业于华中师范大学,获理学博士学位。同年加入湖北中医药大学检验学院纳米传感中心工作,主要从事生物传感器、临床分子诊断、仿生纳米通道传感等研究。
引用本文:    
肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
XIAO Pingping, ZHANG Guojun, SUN Zhongyue. Application Progress of Biomimetic Solid-state Nanopores in Biosensing. Materials Reports, 2022, 36(8): 20080071-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080071  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080071
1 Hille B. Harvey Lectures,1986,82,47.
2 Macara I G. Microbiology and Molecular Biology Reviews,2001,65(4),570.
3 Katz B, Miledi R. Nature,1966,212(5067),1242.
4 Apel P Y, Blonskaya I V, Dmitriev S N, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2015,365,409.
5 Ma J, Liu L, Ni Z. Chinese Journal of Sensors & Actuators,2012,25(7),876.
6 Sang B L, Mitchell D T, Trofin L,et al. Science,2002,296(5576),2198.
7 He H, Xu X, Jin Y. Analytical Chemistry,2014,86(10),4815.
8 Postma H W. Nano Lett,2010,10(2),420.
9 Kowalczyk S W, Kapinos L, Blosser T R, et al. Nature Nanotechnology,2011,6(7),433.
10 Gyurcsányi R E. TrAC Trends in Analytical Chemistry,2008,27(7),627.
11 Zhang H, Tian Y, Jiang L. Nano Today,2016,11(1),61.
12 Ding D, Gao P, Ma Q, et al. Small,2019,15(32),e1804878.
13 Qian Y C, Tian W, Wen L P. Polymer Bulletin,2019(10),10(in Chinese).
钱永超,田威,闻利平.高分子通报,2019(10),10.
14 Sun Y. Journal of Xuzhou Institute of Technology Natural Sciences Edition,2019,34(3),7(in Chinese).
孙耀.徐州工程学院学报,2019,34(3),7.
15 Xia X H, Wang C, Liu F F. Scientia Sinica Chimica,2020,50(8),867.
16 Hou X, Guo W, Jiang L. Chemical Society Reviews,2011,40(5),2385.
17 Martin C R. Science,2007,317(5836),331.
18 Haque F, Li J, Wu H C, et al. Nano Today,2013,8(1),56.
19 Miles B N, Ivanov A P, Wilson K A,et al. Chemical Society Reviews,2013,42(1),15.
20 Zhu Z, Wang D, Tian Y, et al. Journal of the American Chemical Society,2019,141(22),8658.
21 Zhao D, Tang H, Wang H, et al. ACS Sensors,2020,5(7),2177.
22 Shang Y, Zhang Y, Li P, et al. Chemical Communications,2015,51(27),5979.
23 Wang H, Hou S, Wang Q, et al. Journal of Materials Chemistry B,2015,3(8),1699.
24 Xu Y, Sui X, Guan S, et al. Advanced Materials,2015,27(11),1851.
25 Wu K, Kong X Y, Xiao K, et al. Advanced Functional Materials,2019,29(14),1807953.1.
26 Liu X, Wei M, Liu Y, et al. Analytical Chemistry,2016,88(16),8107.
27 Zhang S, Cheng J, Shi W, et al. Analytical Chemistry,2020, 92(8),5952.
28 Shi L, Mu C, Gao T, et al. Chemical Communications,2018,54(81),11391.
29 Cao J, Zhao X P, Younis M R, et al. Analytical Chemistry,2017,89(20),10957.
30 Wang C, Zhao X P, Liu F F, et al. Nano Letters,2020,20(3),1846.
31 Liu Q, Xiao K, Wen L, et al. Journal of the American Chemical Society,2015,137(37),11976.
32 Niu B, Xiao K, Huang X, et al. ACS Applied Materials & Interfaces,2018,10(26),22632.
33 Zhao X P, Wang S S, Younis M R,et al. Analytical Chemistry,2018,90(1),896.
34 Hou X, Guo W, Xia F,et al. Journal of the American Chemical Society,2009,131(22),7800.
35 Gao L, Li P, Zhang Y, et al. Small,2015,11(5),543.
36 Tian Y, Zhang Z, Wen L, et al. Chemical Communications,2013,49(91),10679.
37 Liu Q, Xiao K, Wen L, et al. Acs Nano,2014,8(12),12292.
38 Xie G, Xiao K, Zhang Z, et al. Angewandte Chemie,2015,127(46),13868.
39 Qian Y, Zhang Z, Kong X Y, et al. ACS Applied Materials & Interfaces,2018,10(36),30852.
40 Xu Y, Sui X, Jiang J, et al. Advanced Materials,2016,28(48),10780.
41 Li R, Sui X, Li C, et al. ACS Applied Materials & Interfaces,2018,10(4),3241.
42 Sun Y, Chen S, Chen X, et al. Nature Communications,2019,10(1),1323.
43 Zhang R, Chen X, Sun Z, et al. Analytical Chemistry,2019,91(9),6149.
44 Han C, Hou X, Zhang H, et al. Journal of the American Chemical Society,2011,133(20),7644.
45 Sun Z, Han C, Song M, et al. Advanced Materials,2014,26(3),455.
46 Hou G, Zhang H, Xie G, et al. Journal of Materials Chemistry A,2014,2(45),19131.
47 Pérez-Mitta G, Peinetti A S, Cortez M L, et al. Nano Letters,2018,18(5),3303.
48 Guo W, Hong F, Liu N, et al. Advanced Materials,2015,27(12),2090.
49 Li M, Xiong Y, Lu W, et al. Journal of the American Chemical Society,2020,142(38),16324.
50 Storm A J, Chen J H, Zandbergen H W, et al. Physical Review E,2005,71(5),051903.
51 Harrell C C, Choi Y, Horne L P, et al. Langmuir,2006,22(25),10837.
52 Sun Z, Liao T, Zhang Y, et al. Biosensors and Bioelectronics,2016,86,194.
53 Zhao X P, Liu F F, Hu W C, et al. Analytical Chemistry,2019,91(5),3582.
54 Ali M, Neumann R, Ensinger W. ACS Nano,2010,4(12),7267.
55 Liao T, Li X, Tong Q, et al. Analytical Chemistry,2017,89(10),5511.
56 Han A, Schürmann G, Mondin G, et al. Applied Physics Letters,2006,88(9),350.
57 Ali M, Yameen B, Neumann R, et al. Journal of the American Chemical Society,2008,130(48),16351.
58 Ali M, Ramirez P, Tahir M N, et al. Nanoscale,2011,3(4),1894.
59 Lin L, Liu Y, Yan J, et al. Analytical Chemistry,2013,85(1),334.
60 Zhao X P, Zhou Y, Zhang Q W, et al. Analytical Chemistry,2019,91(1),1185.
61 Nascimento R A, Ozel R E, Mak W H, et al. Nano Letters,2016,16(2),1194.
62 Ying Y L, Hu Y X, Gao R, et al. Journal of the American Chemical So-ciety,2018,140(16),5385.
63 Lou X, Song Y, Liu R, et al. Small Methods,2019,4(2),1900432.
64 Wang C, Jin D, Yu Y, et al. Sensors and Actuators B: Chemical,2020,314,128056.
65 Jiao S, Liu L, Wang J, et al. Small,2020,16(28),e2001223.
66 Wang M, Yin H, Zhou Y, et al. Biosensors and Bioelectronics,2019,128,137.
67 Chen Y, Zhang S, Dai H, et al. Biosensors and Bioelectronics,2020,148,111809.
68 Li P P, Liu X P, Mao C J, et al. Analytica Chimica Acta,2019,1048,42.
[1] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[2] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[3] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[4] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[5] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[6] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[7] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[8] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[9] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[10] 孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
[11] 胡海豹, 曹刚, 张梦卓, 杜鹏, 黄潇. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193.
[12] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[13] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[14] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[15] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed