Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23171-23182    https://doi.org/10.11896/cldb.20070090
  高分子与聚合物基复合材料 |
细菌视紫红质在生物传感器中的应用进展
刘文清1,2, 张涛1,3
1 中国科学院上海技术物理研究所,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学,上海 201210
Progress in the Application of Bacteriorhodopsin in Biosensors
LIU Wenqing1,2, ZHANG Tao1,3
1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083,China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Tech University, Shanghai 201210, China
下载:  全 文 ( PDF ) ( 10257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物传感器是生物敏感材料、理化换能器与电信号放大装置等多学科交叉的综合集成技术装置。典型的生物传感器以特异性感知的生物活性材料作为敏感元件,结合基于微电子器件的物理化学换能器和调理电路,实现生物敏感信息的电信号转换及放大。换能器的灵敏度、抗干扰能力等因素直接影响生物传感器的性能。从嗜盐菌中提取的细菌视紫红质是一种具有良好光敏特性的生物材料,可直接将光信号转化成电信号,从而实现将敏感元件和换能器合二为一的功能,已广泛应用于多种生物传感器中。
细菌视紫红质的感光灵敏度和稳定性适用于开发具有颜色灵敏度的光传感器,最早的应用方向是人工视网膜;其光敏感和换能一体化特性可实现使用单个传感元件进行光学运动检测的功能,应用可扩展到运动传感领域。除了在视觉传感领域的应用,细菌视紫红质在病原体检测、水体pH检测、细胞膜电位检测等领域均表现出良好的灵敏性、稳定性和特异性。其不仅在生物传感领域具有应用价值,而且为半导体传感方法的研究提供了新途径。
本文在简述细菌视紫红质的质子泵和光电响应特性等基本功能的基础上,阐述了细菌视紫红质构建生物传感器的应用进展,分析了不同传感器的特点,以期为细菌视紫红质的机理及其应用研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文清
张涛
关键词:  细菌视紫红质  生物传感器  光驱动质子泵  光电响应    
Abstract: Biosensor is a comprehensive integrated technology device that crosses multiple disciplines such as biological sensitive materials, physical and chemical transducers, and electrical signal amplification devices. Typical biosensors utilizebioactive materials with specific sensing functions as sensitive elements, combined physical and chemical transducers and conditioning circuits based on microelectronic devices, to rea-lize the conversion of biosensitive information into electrical signals and amplification. The sensitivity and anti-interference ability of transducers directly affect the performance of biosensor. Extracted from halobacterium salinarum, bacteriorhodopsin is a kind of biological material with good photosensitive properties. It can directly convert optical signals into electrical signals to realize the function of combining sensitive elements and transducers. It has been widely used in a variety of biosensors.
The photosensitivity and stability of bacteriorhodopsin are suitable for the development of light sensors with color sensitivity, and the earliest application direction is artificial retina. The integration of photosensitivity and energy conversion characteristics can realize the function of optical motion detection using only a single sensor element, and the application can be extended to the field of motion sensing. In addition to its application in the area of vision sensing, bacteriorhodopsin has shown good sensitivity, stability and specificity in pathogen detection, water pH detection, cell membrane potential detection. It not only has application value in the field of biosensor, but also provides a new way for the research of semiconductor sensing methods.
In this review, based on the brief introduction of the basic functions of bacteriorhodopsin, such as proton pump and photoelectric response cha-racteristics, the application progress of biosensor based on bacteriorhodopsin is described and the characteristics of different sensors are analyzed, so as to provide reference for the mechanism and application research of rhodopsin.
Key words:  bacteriorhodopsin    biosensor    light driven proton pump    photoelectric response
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  Q819  
  TN247  
基金资助: 中国科学院知识创新项目
通讯作者:  haozzh@sina.com   
作者简介:  刘文清,2018年6月毕业于中国农业大学,获得农学学士学位。现为中国科学院上海技术物理研究所的在读博士研究生,在张涛研究员的指导下进行研究。所修专业为物理电子学,目前主要研究领域为基于生光电融合的感知与处理技术。
张涛,1988年在华中工学院(现华中理工大学)获学士学位,2007年在中国科学院上海技术物理研究所获博士学位。现任中国科学院上海技术物理研究所工程一室主任、研究员、博士研究生导师,国家863重大项目专家组成员,中国空间学会微重力科学与应用专业委员会委员,中国空间学会第七届理事会理事。目前已完成了包括国家863项目、国家载人航天项目和中国科学院知识创新重要方向性项目等多项研究任务,提出空间科学实验仪器的功能模块化和模块标准化的设计方法,负责完成了一批新一代空间科学实验仪器原理样机及关键部件的研制,取得了多项研究成果。
引用本文:    
刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
LIU Wenqing, ZHANG Tao. Progress in the Application of Bacteriorhodopsin in Biosensors. Materials Reports, 2021, 35(23): 23171-23182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070090  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23171
1 Someya T, Bao Z, Malliaras G G. Nature, 2016, 540,379.
2 Yang S, Zhang S Y, Jiang Y Q, et al. Advanced sensing technology, University of Science and Technology of China Press, China, 2014 (in Chinese).
杨圣, 张韶宇, 蒋依秦, 等.先进传感器技术.中国科学技术大学出版社, 2014.
3 Willner I, Baron R, Willner B. Biosensors and Bioelectronics, 2007, 22,1841.
4 Zhang A, Lieber C M. Chemical Reviews, 2015, 116,215.
5 Li Y T, Tian Y, Tian H, et al. Sensors, 2018, 18(5),1368.
6 Willner I, Willner B. Trends in Biotechnology, 2001,19,222.
7 Shanmugam S, Hari A, Pandey A, et al. Fuel, 2020, 270,117453.
8 Yoon J, Lee T, Choi J W. Micromachines, 2019,10,347.
9 Knoblauch C, Griep M, Friedrich C. Sensors, 2014, 14,19731.
10 Bostick C D, Mukhopadhyay S, Pecht I, et al. Reports on Progress in Physics, 2018, 81,026601.
11 Svechtarova M I, Buzzacchera I, Toebes B J, et al. Electroanalysis, 2016, 28,1201.
12 Apama S, Anil K S. Biotechnology Letters, 2017, 39,1793.
13 Zheng Y. Studies on photochromic properties of bacteriorhodopsin and its applications. Ph.D. Thesis, State Key Laboratory of Transient Optics Technology Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences, China, 2004 (in Chinese).
郑媛. 菌紫质光致变色特性及应用研究. 博士学位论文, 中科院西安光机所, 2004.
14 Hampp N A. Chemical Reviews, 2000,100,1755.
15 Hampp N A. Applied Microbiology and Biotechnology, 2000, 53,633.
16 Wu J. Investigations of proton pumping behaviors of retinal proteins and corresponding material techniques in potential photoactive devices. Ph.D.Thesis, Fudan University, China, 2009 (in Chinese).
吴佳. 视黄醛膜蛋白的质子泵功能及其光响应期间材料的研究. 博士学位论文, 复旦大学, 2009.
17 Hampp N A. Pure and Applied Chemistry, 1996, 68,1361.
18 Luecke H, Schobert B, Richter H T, et al. Journal of Molecular Biology,1999, 291, 899.
19 Muller D J, Kessler M, Oesterhelt F, et al. Biophysical Journal, 2002, 83,3578.
20 Pebay P E, Rummel G, Rosenbusch J P, et al. Science, 1997, 277,1676.
21 Rakovich A, Donegan J F, Oleinikov V, et al. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2014, 20,17.
22 Kojima K, Shibukawa A, Sudo Y. Biochemistry, 2020, 59,218.
23 Miyazaki S, Matsumoto M, Brier S B. European Biophysics Journal with Biophysics Letters, 2013, 42,257.
24 Wei L. The optical properties of bacterial rhodopsin protein polymer composite film and its application in photonics devices. Master's Thesis, Fudan University, China, 2008 (in Chinese).
魏崃. 细菌视紫红质蛋白聚合物复合膜的光学性质以及在光子学器件方面的应用研究. 硕士学位论文, 复旦大学, 2008.
25 Miyasaka T, Koyama K, Itoh I. Science, 1992, 255,342.
26 Yao B L, Wang Y L, Hu K S, et al. Photochemistry and Photobiology, 2002, 76(5), 545.
27 Yao B L, Wang Y L, Lei M, et al. Biosensors and Bioelectronics, 2003, 19,283.
28 Yao B L, Xu D L, Hou X. Journal of Biomedical Optics, 2003, 8(1),48.
29 Yao B L, Lei M, Wang Y L, et al. Acta Biochimica et Biophysica Sinica, 2002, 34(1), 113(in Chinese).
姚保利, 雷铭, 王英利, 等. 生物化学与生物物理学报, 2002, 34(1),113.
30 Yao B L, Wang Y L, Hu K S, et al. Acta Biochimica et Biophysica Sinica, 2001, 33(4),443(in Chinese).
姚保利, 王英利, 胡坤生, 等.生物化学与生物物理学报, 2001, 33(4),443.
31 Wang W W, Knopf G K, Bassi A S. Biosensors and Bioelectronics, 2006, 21,1309.
32 Edman K, Nollert P, Royant A, et al. Nature, 1999, 401,822.
33 Kobayashi T, Saito T, Ohtani H, et al. Nature, 2001, 414,531.
34 Yang W Z. Study on the absorption and modulated properties and its applications of nano-biological material bacteriorhodopsin. Master's Thesis, State Key Laboratory of Transient Optics Technology Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences, China, 2003 (in Chinese).
杨文正. 纳米生物材料细菌视紫红质的光吸收与光调制特性及其应用研究. 硕士学位论文, 中科院西安光机所, 2003.
35 Wanger N L, Greco J A. Journal of the Royal Society Interface, 2013, 10, 20130197.
36 Wise K J, Gillespie N B, Stuart J A, et al. Trends in Biotechnology, 2002, 20,387.
37 Wang W W, Knopf G K, Bassi A S. In: IEEE Transactions on NanoBioscience. Canada, 2008, pp.249.
38 Miyasaka T, Koyama K. Applied Optics,1993, 32,6371.
39 Choi H G, Jung W C, Min J H, et al. Biosensors and Bioelectronics, 2001,16,925.
40 Choi H G, Min J, Choi J W, et al. Biosensors and Bioelectronics, 1998, 13,1069.
41 Choi H G, Min J, Choi J W, et al. Molecular Crystals and Liquid Crystals, 1999, 327,267.
42 Michael F, Pertti S, Sinikka P, et al. BioSystems, 2000, 54,131.
43 Lensu L, Frydrych M, Parkkinen, J, et al. Optical Materials, 2004, 27, 57.
44 Porod W, Werblin F, Chua L O, et al. Annals of the New York Academy of Sciences, 2004,1013,92.
45 Wang W W, Knopf G K, Bassi A S. In: Proceedings of the 2005 IEEE Conference on Control Applications Toronto. Canada, 2005, pp. 28.
46 Wang W W, Knopf G K, Bassi A S. In: Conference on Optomechantronic Sensors, Actuators and Control. Philadelphia, 2004, pp. 41.
47 Kasai K, Haruyama Y, Yamada T, et al. In: Proceedings of SPIE NanoScience and Engineering. California, 2013, pp. 1.
48 Okada Y, Tanabe T, Mukai T, et al. Synthetic Metals, 2016, 222,249.
49 Takamatsu S, Hoshino Y, Matsumoto K, et al. IEICE Electron Express, 2011,8, 505.
50 Mohammadpour R, Janfaza S. ACS Sustainable Chemistry and Enginee-ring, 2015, 3,809.
51 Zhao X L, Kang X, Chen L, et al. Acta Physica Sinica, 2014, 63(9), 098502.
52 Griep M H, Walczak K, Winder E, et al. In: Conference on Nonobiotronics. San Diego, 2007, pp. 6646.
53 Jin Y, Honig T, Ron I, et al. Chemical Society Reviews, 2008, 37,2422.
54 Ahmadi M, Osei E K, Yeow J T W. Sensors and Actuators B: Chemical, 2012, 166-167,177.
55 Ahmadi M, Yeow J T. Biosensors and Bioelectronics, 2011, 26,2171.
56 Evans P A, Molney P J, Mountford P J. British Journal of Radiology, 2001, 74,537.
57 Wang W W, Knopf G K, Bassi A S. Optical Engineering, 2006, 45,84001.
58 Borshchevskiy V, Round E, Erofeev I, et al. Acta Crystallographica, 2014, 70,2675.
59 Ahmed A, Rushworth J V, Hirst N A, et al. Clinical Microbiology Reviews, 2014, 27,631.
60 Santos M, Agusil J P, Prieto-Simon B, et al. Biosensors and Bioelectro-nics, 2013, 45(1),174.
61 Ichi S E, Leon F, Vossier L, et al. Biosensors and Bioelectronics, 2014, 54,378.
62 Chen H M, Jheng K R, Yu A D. Biosensors and Bioelectronics, 2017, 91,24.
63 Chen H M, Jheng K R, Yu A D, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64,1.
64 Chen H M, Lin C J, Jheng K R. Colloids and Surfaces B Biointerfaces, 2014, 116(14),482.
65 Wang Y, Alocilja E C. Journal of Biological Engineering, 2015, 9,16.
66 Alocilja E C, Jain P, Pryg K. Technology, 2016, 4,194.
67 Wu H H, Liao X Q, Wu X Y. Sensors, 2018, 18,4493.
68 Oesterhe D, Stoecken W. Nature New Biology, 1971, 233(39),149.
69 Mukohata Y, Sugiyama Y, Kunio I, et al. Biochemical and Biophysical Research Communications, 1988, 151,1339.
70 Hochbaum D R, Zhao Y, Farhi S L, et al. Nature Methods, 2014, 11,825.
71 Penzkofer A, Silapetere A, Hegemann P. International Journal of Molecular Sciences, 2019, 20,4086.
72 Cohen A E, Venkatachalam V. Annual Review Of Biophysics, 2014, 43(1),211.
73 Abdelfattah A S, Farhi S L, Zhao Y X, et al. Journal of Neuroscience, 2016, 36(8),2458.
74 Kralgj J M, Hochbaum D R, Douglass A D, et al. Science, 2011, 333,345.
75 Kralgj J M, Douglass A D, Hochbaum D R, et al. Nature Methods, 2012, 9(1),90.
76 Maclaurin D, Venkatachalam V, Lee H, et al. PNAS, 2013, 110(15),5939.
77 Gong Y, Li J Z, Schnitzer M J. PLoS One, 2013, 8(6),e66959.
78 Flytzanis N C, Bedbrook C N, Chiu H, et al. Nature Communications, 2014, 5,4894.
79 Adam Y, Kim J, Lou S, et al. BioRxiv, 2018, 28168.
80 Piatkevich K D, Jung E E, Straub C, et al. Nature Chemical Biology, 2018,14,352.
81 Zou P, Zhao Y, Douglass A D, et al. Nature Communications, 2014, 5,4625.
82 Gong Y, Huang C, Li J Z, et al. Science, 2015, 350,1361.
83 Kannan M, Vasan G, Huang C, et al. Nature Methods, 2018, 15,1108.
84 Dong Q, Huang Y, Song D, et al. Biosensors and Bioelectronics, 2018, 112,136.
85 Robertson B, Lukashev E P. Biophysical Journal, 1995, 68,1507.
86 Rao S Y, Guo Z B, Liang D W, et al. Physical Chemistry Chemical Physics, 2013, 15,15821.
87 Lyu Y J, Yang N N, Li S H, et al. Nano Energy, 2019, 66,104129.
88 Guo Z, Liang D, Rao S Y, et al. Nano Energy, 2015, 11,654.
89 Li H J, Wang M M, Qi G H, et al. Journal of Materials Chemistry A, 2020, 8,1.
90 Oleinkov V A, Solovyeva D O, Zaitsev S Y. Biochemistry, 2020, 85, 196.
91 Bakaraju V, Prasad E S, Meena B, et al. ACS Omega, 2020, 5(17), 9702.
92 Griep M, Winder E, Lueking D, et al. Journal of Nanoscience and Nanotechnology, 2010, 10(9), 6029.
93 Griep M H, Winder E M, Lueking D R, et al. Biochemistry and Molecular Biology International, 2012, 2012,910707.
94 Kvivenkov V, Samokhvalov P, Nabiev I. Biosensors and Bioelectronics, 2019, 137,117.
95 Yao B L, Xu D L. Acta Biochimica et Biophysica Sinica, 1995, 22(2),117 (in Chinese).
姚保利, 徐大纶. 生物化学与生物物理学报, 1995, 22(2),117.
96 Li Y T, Tian H, Zhao H M, et al. Nanoscale, 2018, 10(2),526.
97 Zhou X, Lv F T, Liu L B, et al. Advanced Optical Materials, 2020, 8(1),1901551.
[1] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[4] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[5] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed