Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19195-19203    https://doi.org/10.11896/cldb.20060177
  高分子与聚合物基复合材料 |
纳米酶在传感检测中的应用研究进展
戈明亮1,2,3, 李越颖1, 梁国栋2
1 华南理工大学,聚合物成型加工工程教育部重点实验室,聚合物新型成型装备国家工程研究中心,广州 510640
2 中山大学聚合物复合材料及功能材料教育部重点实验室,广州 510640
3 贵州民族大学材料科学与工程学院,贵阳 550000
Research Progress on Application of Nanozymes in Sensory Detection
GE Mingliang1,2,3, LI Yueying1, LIANG Guodong2
1 National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
2 Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510640, China
3 School of Material Science and Engineering, Guizhou Minzu University, Guiyang 550000, China
下载:  全 文 ( PDF ) ( 5046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米酶的诞生推动了化学、材料学以及生物学等学科的发展。在纳米技术基础上发展的纳米酶克服了天然酶的诸多缺点,如成本高昂、稳定性差和对储存条件要求苛刻等,在生物传感、免疫分析、癌症诊断和治疗、环境监测等领域应用广泛。本文从纳米酶的分类、纳米酶的催化机理以及其在传感检测中的应用三个方面综述了近年来研究者们在纳米酶领域取得的突出成就。这些优秀的研究成果从基体材料的选择、材料结构的创新、催化机理的探讨等角度丰富了纳米酶的理论,极大地扩展了纳米酶家族的范围,为多种情景下的传感检测方法提供了崭新的思路。此外,本文针对纳米酶的研究现状,分析了其在理论、应用中的不足,并对纳米酶的未来发展方向提出了一些思考和建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戈明亮
李越颖
梁国栋
关键词:  纳米酶  模拟酶  过氧化物酶  生物传感    
Abstract: The birth of nano-enzymes has promoted the development of disciplines such as chemistry, materials science and biology. Nanozymes deve-loped on the basis of nanotechnology overcome many shortcomings of natural enzymes, such as high cost, poor stability, and strict storage requirements, and are widely used in biosensing, immunoassay, cancer diagnosis and treatment, environmental monitoring and other fields. This article summarizes the outstanding achievements made by researchers in the field of nanozymes in three aspects, including the classification of nanozymes, the catalytic mechanism of nanozymes, and their applications in sensing and detection. These excellent research results have enriched the theory of nanozymes from the perspectives of choice of matrix materials, innovation of material structure, and discussion of catalytic mechanism, which has greatly expanded the scope of the nanozyme family and provided sensory detection methods in various scenarios. In addition, we analyze deficiency of nanozymes' theory and application aiming the research status, and give some thoughts and suggestions on the future development direction of nanozymes.
Key words:  nanozymes    mimic enzyme    peroxidase    biosensing
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TB332  
基金资助: 广东省自然科学基金(2016A030313520);广东省水利科技创新项目(2017-24);中山大学聚合物复合材料及功能材料教育部重点实验室开放基金(PCFM-2017-02);广东省教育厅特色创新类项目(2017KTSCX007);广州市科技计划项目(202102080477)
通讯作者:  gml@scut.edu.cn   
作者简介:  戈明亮,博士,华南理工大学机械与汽车工程学院副教授,华南理工大学“汽车内饰材料研发中心”主任,核心期刊《塑料科技》编委,中国化工学会化工新材料委员会会员,广东省安全生产协会标准化评审专家。研究领域包括二维层状材料、有机-无机纳米复合材料、功能高分子材料等及其在环境、医药、催化、仿生等领域的应用。
引用本文:    
戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
GE Mingliang, LI Yueying, LIANG Guodong. Research Progress on Application of Nanozymes in Sensory Detection. Materials Reports, 2021, 35(19): 19195-19203.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060177  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19195
1 Wu J, Wang X, Wang Q, et al. Chemical Society Reviews, 2019, 48(4), 1004.
2 Manea F, Houillon F B, Pasquato L, et al. Angewandte Chemie International Edition, 2004, 43(45), 6165.
3 Zeng R, Luo Z, Zhang L, et al. Analytical Chemistry, 2018, 90(20), 12299.
4 Li S, Liu X, Chai H, et al. TrAC Trends in Analytical Chemistry, 2018, 105, 391.
5 Zhang R, Fan K, Yan X. Science China Life Sciences, 2020, DOI: 10.1007/s11427-019-1570-7.
6 Naha P C, Liu Y, Hwang G, et al. ACS Nano, 2019, 13(5), 4960.
7 Gao L, Zhuang J, Nie L, et al. Nature Nanotechnology,2007,2(9),577.
8 Yu F, Huang Y, Cole A J, et al. Biomaterials, 2009, 30(27), 4716.
9 Liu B, Liu J. Nanoscale, 2015, 7(33), 13831.
10 Yang H, Xue W, Liu M, et al. Water Research, 2020, 174, 115637.
11 Karakoti A, Singh S, Dowding J M, et al. Chemical Society Reviews, 2010, 39(11), 4422.
12 Asati A, Kaittanis C, Santra S, et al. Analytical Chemistry, 2011, 83(7), 2547.
13 Li D, Garisto S L, Huang P J J, et al. Inorganic Chemistry Communications, 2019, 106, 38.
14 Liu B, Huang Z, Liu J. Nanoscale, 2016, 8(28), 13562.
15 Zhao S, Li Y, Liu Q, et al. Advanced Functional Materials, 2020, DOI:10.1002/adfm.202004692.
16 Cheng X, Huang L, Yang X, et al. Journal of Colloid and Interface Science, 2019, 535, 425.
17 Wei H, Wang E. Chemical Society Reviews, 2013, 42(14), 6060.
18 Chen W, Chen J, Liu A L, et al. ChemCatChem, 2011, 3(7), 1151.
19 Karim M d N, Singh M, Weerathunge P, et al. ACS Applied Nano Materials, 2018, 1(4), 1694.
20 Wan Y, Qi P, Zhang D, et al. Biosensors and Bioelectronics, 2012, 33(1), 69.
21 Fan D, Shang C, Gu W, et al. ACS Applied Materials Interfaces, 2017, 9(31), 25870.
22 André R, Natálio F, Humanes M, et al. Advanced Functional Materials, 2011, 21(3), 501.
23 Chen J, Wu W, Huang L, et al. Chemistry-A European Journal, 2019, 25(51), 11940.
24 O'Mara P B, Wilde P, Benedetti T M, et al. Journal of the American Chemical Society, 2019, 141(36), 14093.
25 Huang Q, Zhang J, Li W, et al. Microchimica Acta, 2020, 187(4), 226.
26 He S, Yang L, Lin X, et al. Talanta, 2020, 211, 120707.
27 Jv Y, Li B, Cao R. Chemical Communications, 2010, 46(42), 8017.
28 He W, Zhou Y, Wamer W, et al. Biomaterials, 2013, 34(3),765.
29 Liu Z, Wang F, Ren J, et al. Biomaterials, 2019, 208, 21.
30 Shi W, Wang Q, Long Y, et al. Chemical Communications, 2011, 47(23), 6695.
31 Jin G H, Ko E, Kim M K, et al. Sensors and Actuators B: Chemical, 2018, 274, 201.
32 Liu S, Tian J, Wang L, et al. RSC Advances, 2011, 2, 411.
33 Wang X, Qu K, Xu B, et al. Nano Research, 2011, 4, 908.
34 Clark A, Zhu A, Sun K, et al. Journal of Nanoparticle Research, 2011, 13(10), 5547.
35 Kim M S, Lee J, Kim H S, et al. Advanced Functional Materials, 2020, 30(1), 1905410.
36 Huang Y, Liu C, Pu F, et al. Communications, 2017, 53(21), 3082.
37 Wang Q, Zhang X, Huang L, et al. ACS Applied Materials Interfaces, 2017, 9(8), 7465.
38 Lin T, Zhong L, Guo L, et al. Nanoscale, 2014, 6(20), 11856.
39 Zhao L, Wang J, Su D, et al. Nanoscale, 2020,12, 19420.
40 Wu X, Chen T, Chen Y, et al. Journal of Materials Chemistry B, 2020, 8(13), 2650.
41 Singh S. Frontiers in Chemistry, 2019, DOI: 10.3389/fchem.2019.00046.
42 Li Z X, Feng K Z, Zhang W, et al. Chinese Science Bulletin, 2018, 63, 2128(in Chinese).
李卓轩, 封开政, 张薇, 等. 科学通报. 2018, 63(21), 2128.
43 Dhall A, Self W. Antioxidants, 2018, 7(8), 97.
44 Leifeld V, dos Santos T P M, Zelinski D W, et al. Journal of Environmental Management, 2018, 222, 284.
45 Matter M T, Furer L A, Starsich F H L, et al. ACS Applied Materials Interfaces, 2019, 11(3), 2830.
46 Reddy U A, Prabhakar P V, Mahboob M. Saudi Journal of Biological Sciences, 2017, 24(6), 1172.
47 Pudlarz A M, Ranoszek-Soliwoda K, Czechowska E, et al. Applied Biochemistry and Biotechnology, 2019, 187(4), 1551.
48 Mu J, Zhang L, Zhao M, et al. ACS Applied Materials Interfaces, 2014, 6(10), 7090.
49 Chen Z, Yin J J, Zhou Y T, et al. ACS Nano, 2012, 6(5), 4001.
50 Huang Y, Ren J, Qu X. Chemical Society Reviews,2019, 119(6), 4357.
51 Strzepa A, Pritchard K A, Dittel B N. Cellular Immunology,2017,317,1.
52 Cao H, Xiao J, Liu H. Biochemical Engineering Journal, 2019, 152, 107384.
53 Shah K, Bhagat S, Varade D, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 50.
54 Ahmed S R, Corredor J C, Nagy É, et al. Nanotheranostics, 2017, 1(3), 338.
55 Li Q, Yang D, Yang Y. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118882.
56 Zhang S, Lin F, Yuan Q, et al. Journal of Environmental Sciences, 2020, 88, 103.
57 Wu L, Zhang M, Zhu L, et al. Microchemical Journal, 2020, 157, 105079.
58 Cheng H, Lin S, Muhammad F, et al. ACS Sensors, 2016, 1(11), 1336.
59 Hu L, Liao H, Feng L, et al. Analytical Chemistry, 2018, 90(10), 6247.
60 Oh S, Kim J, Tran V T, et al. ACS Applied Materials Interfaces, 2018, 10(15), 12534.
61 Duan D, Fan K, Zhang D, et al. Biosensors and Bioelectronics, 2015, 74, 134.
62 Asati A, Kaittanis C, Santra S, et al. Analytical Chemistry, 2011, 83(7), 2547.
63 Feng L, Dong Z, Liang C, et al. Biomaterials, 2018, 181, 81.
64 Cao F, Zhang Y, Sun Y, et al. Chemistry of Materials, 2018, 30(21), 7831.
65 Wang P, Liu S, Hu M, et al. Advanced Functional Materials, 2020, 30(21), 2000647.
66 Wang Z, Dong K, Liu Z, et al. Biomaterials, 2017, 113, 145.
67 Hasan A, Nanakali N M Q, Salihi A, et al. Talanta, 2020, 215, 120939.
68 Li W, Chen B, Zhang H, et al. Biosensors and Bioelectronics, 2015, 66, 251.
69 Han K N, Choi J S, Kwon J. Scientific Reports, 2017, 7(1), 1.
70 Wei J, Yang L, Luo M, et al. Ecotoxicology and Environmental Safety, 2019, 179, 17.
71 Wang J, Huang R, Qi W, et al. Applied Catalysis B: Environmental, 2019, 254, 452.
72 Zhang J, Zhuang J, Gao L, et al. Chemosphere, 2008, 73(9), 1524.
[1] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[2] 李晓楠, 李景华, 杨宪园, 胡燕, 蔡开勇. 中空Fe3O4-PB复合纳米粒类Fenton催化降解苯酚[J]. 材料导报, 2020, 34(13): 13017-13021.
[3] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[4] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed