Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19204-19213    https://doi.org/10.11896/cldb.20040029
  高分子与聚合物基复合材料 |
基于等离子体技术改性纺织材料的研究进展
陈方春, 张同华, 徐梦婷, 李智
西南大学纺织服装学院,重庆 400700
Research Progress in Modification of Textiles Materials by Plasma Technology
CHEN Fangchun, ZHANG Tonghua, XU Mengting, LI Zhi
College of Textile and Apparel, Southwest University, Chongqing 400700, China
下载:  全 文 ( PDF ) ( 3653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 改性可改善纺织材料性能或赋予其新的性能。改性方法主要包括生物改性法、化学改性法和物理改性法。等离子体技术是物理改性法中的典型技术,主要基于电离产生的等离子体来实现各种改性目的。近年来,等离子体技术已成为一个非常活跃、发展迅速的研究领域,在纺织材料的表面改性中占有重要地位。
相对于其他改性方法而言,等离子体技术具有化学药品使用少、污染小、可操作性强等优势。通过等离子体在材料表面的作用可实现材料改性而不影响材料的内部结构。基于等离子体技术处理纺织材料的研究主要集中在以下四个方面:(1)清洁效果;(2)改变表面形态;(3)引入自由基;(4)等离子体聚合。
低温等离子体对材料的损伤较小,是目前纺织材料改性中应用较广泛的等离子体技术。通过等离子体技术的刻蚀活化、自由基改性、聚合覆膜三种途径可提升纺织材料的润湿性、耐摩擦性、生物相容性及可染色性能,还能赋予纺织材料抗菌、自清洁以及自修复等功能,从而提升纺织品的应用价值,拓展其应用范围。
本文简述了等离子体技术的分类,总结了当前等离子体技术的发展现状,重点综述了等离子体技术在纺织材料领域的应用,详细阐述了基于等离子体技术对纺织纤维、织物和纤维膜进行改性的研究进展。最后,基于以上综述结果,对等离子体技术在纺织材料领域的研究前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈方春
张同华
徐梦婷
李智
关键词:  等离子体技术  改性  纺织纤维  织物    
Abstract: Modification is to improve the inherent properties of textile materials or endow them with new properties. The methods for modification mainly include biological modification, chemical modification and physical modification. Plasma technology is a typical technology of physical modification, which is mainly based on plasma generated by ionization to achieve various modification purposes. In recent years, plasma technology has become a very active and rapidly developing research field, and it plays an important role in the surface modification of textile materials.
Compared with other modification methods, the plasma technology has better maneuverability with less chemicals and pollution. The plasma perform modification on the surface of materials instead of affecting their internal structure. The researches on the modification of textile materials based on plasma technology mainly focuses on these four aspects: (1) cleaning effect; (2) surface morphology modification; (3) the introduction of free radicals; (4) plasma polymerization.
Low temperature plasma is a widely used plasma technology for modifying textile materials since it has minimum negative effect on modified materials. The plasma technology improves wettability, friction resistance, biocompatibility and dyeability of textile materials through plasma etching activation, free radical modification and polymer coating. Moreover, it can endow the textile materials with antibacterial property, self-cleaning effect and even self-healing functions, so as to enhance the application value of textiles and expand its application scope.
This paper briefly introduces the classifications of plasma technology and summarizes the development of plasma technology. And this particularly focuses on the application of plasma technology in textile materials and elaborates the research progress on the modification of textile fiber, fabric and fibrous membrane relating to plasma technology in detail. Finally, based on this review, the research prospects of plasma technology for textile material modification are proposed.
Key words:  plasma technology    modification    textile fibers    fabrics
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TS195.15  
基金资助: 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0087);2019年重庆市留创计划创新类资助项目(cx2019090);中央高校基本科研业务费重点项目(XDJK2018B015)
通讯作者:  tclizhi@swu.edu.cn   
作者简介:  陈方春,硕士研究生,研究方向为智能纺织品。
李智,博士,副教授,研究方向为功能纤维与生物医用材料。
引用本文:    
陈方春, 张同华, 徐梦婷, 李智. 基于等离子体技术改性纺织材料的研究进展[J]. 材料导报, 2021, 35(19): 19204-19213.
CHEN Fangchun, ZHANG Tonghua, XU Mengting, LI Zhi. Research Progress in Modification of Textiles Materials by Plasma Technology. Materials Reports, 2021, 35(19): 19204-19213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040029  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19204
1 Di J H. Chinese Journal of Liquid Crystals and Displays, 1989(6),45(in Chinese).
邸建华.发光快报,1989(6),45.
2 Zhang X K. China High Tech Enterprise, 2012(3),94(in Chinese).
张兴科.中国高新技术企业,2012(3),94.
3 Anthony L P, Zheng Y X. Scientific & Technology Book Review, 2015(9),14(in Chinese).
Anthony L P,郑耀昕.国外科技新书评介,2015(9),14.
4 Song H, Wang B W, Xu G H. Chemical Industry and Engineering, 2007, 24(4),356(in Chinese).
宋华,王保伟,许根慧.化学工业与工程,2007,24(4),356.
5 Shen J J. China Strategic Emerging Industry, 2018, 172(40),157(in Chinese).
沈锴钧.中国战略新兴产业,2018,172(40),157.
6 Wang L J. Journal of Yibin University, 2009, 9(6),41(in Chinese).
王利娟.宜宾学院学报,2009,9(6),41.
7 Huang H N. Low Carbon World, 2015(19), 9(in Chinese).
黄虎宁.低碳世界,2015(19),9.
8 Mao M M. Study on the treatment of printing and dyeing sludge by thermal plasma gasification technology. Master's Thesis, Zhejiang Univer-sity, 2017(in Chinese).
毛梦梅.热等离子体气化技术处理印染污泥的研究.硕士学位论文,浙江大学,2017.
9 Zhang Y, Liu Z W, Tan X H, et al. Chinese Brewing, 2019(1),20(in Chinese).
张晔,刘志伟,谭兴和,等.中国酿造,2019(1),20.
10 Nestler K, Böttger-Hiller F, Adamitzki W, et al. Procedia CIRP, 2016, 42,503.
11 Bónová L, Zahoranová A, Kováčik D, et al. Applied Surface Science, 2015, 331,79.
12 Franck C M. IEEE Transactions on Power Delivery, 2011,26(2),998.
13 Seeger M. Plasma Chemistry and Plasma Processing, 2015, 35(3),527.
14 Mariotti D, Belmonte T, Benedikt J, et al. Plasma Processes and Polymers, 2016, 13(1),70.
15 Rubin M B. Chemical & Pharmaceutical Bulletin, 2001, 26(1), 40.
16 Yang W, Rong M Z. Electrotechnical Journal, 2000(3), 3(in Chinese).
杨武,荣命哲.电工技术杂志,2000(3),3.
17 Nestler K, Böttger-Hiller F, Adamitzki W, et al. Procedia CIRP, 2016, 42,503.
18 Moisan M, Barbeau J, Moreau S, et al. International journal of Pharmaceutics, 2001, 226(1-2),1.
19 Moisan M, Levif P, Séguin J, et al. Journal of Physics D: Applied Phy-sics, 2014, 47(28),285404.
20 Keidar M, Shashurin A, Volotskova O, et al. Physics of Plasmas, 2013, 20(5),057101.
21 Schlegel J, Köritzer J, Boxhammer V. Clinical Plasma Medicine, 2013, 1(2),2.
22 Ehlbeck J, Schnabel U, Andrasch M, et al. Contributions to Plasma Physics, 2015, 55(10),753.
23 Ekezie F G C, Sun D W, Cheng J H. Trends in Food Science & Technology, 2017, 69,46.
24 Randeniya L K,de Groot G J J B. Plasma Processes and Polymers, 2015, 12,608.
25 Zille A,Oliveira F R, Souto A P. Plasma Processes and Polymers, 2014,12(2), 98.
26 Iris Kippler,Rolf-Dieter Hund,Chokri Cherif.AU-TEX Research Journal, 2014,14(1),34.
27 Liu T. Advanced Textile Technology, 2013(1),66(in Chinese).
刘涛.现代纺织技术,2013(1),66.
28 Peng H K, Zheng G, Wang R. Fibers and Polymers, 2015, 16(12),2538.
29 Peng H K, Zheng G, Wang R,et al. RSC Advances, 2015, 5,78172.
30 Atyabi S M, Sharifi F, Irani S, et al. Cell Biochemistry and Biophysics, 2016, 74(2),181.
31 Tverdokhlebov S I, Bolbasov E N, Antonova L V, et al. Materials Letters, 2016,171,87.
32 Wen Y, Meng X, Liu J, et al. High Performance Polymers, 2016, 29(9), 1083.
33 Sun X, Bu J, Liu W, et al. Science and Engineering of Composite Mate-rials, 2017,24(4),477.
34 Jia C, Chen P, Wang Q, et al. Polymer Composites, 2016,37(2), 620.
35 Chang Q X, Zhao H J, He R Q. Surface and Interface Analysis, 2017,49(8), 750.
36 Eung-seok Lee,Choong-hyun Lee,Yoon-Soo Chun, et al. Composites Part B: Engineering, 2017,116, 451.
37 Sahebalzamani M, Biazar E, Shahrezaei M, et al. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64(3),149.
38 Lu Z, Hu W, Xie F, et al. Journal of Applied Polymer Science, 2017,134(34),45215.
39 Vrabič Brodnjak, Jesih Adolf,Gregor-Svetec Diana,et al. Coatings, 2018,8(4), 133.
40 Chang Y, Sun T, Fan C, et al. Composite Interfaces, 2018, 25(3),1.
41 Zhang Y, Ma X, Cai P N. Cotton Textile Technology, 2014, 42(2),32(in Chinese).
张莹,马新安,蔡普宁.棉纺织技术,2014, 42(2),32.
42 Xi W W, Jian H, Yun L. E-Journal of Chemistry, 2012, 9(3),1581.
43 Moosburger-Will J, Lachner E, Löffler M, et al. Applied Surface Science, 2018, 453,141.
44 Xiao Y, Lu W. Journal of Materials Chemistry A, 2016,4, 18164.
45 Song J B, Yuan Q P. Bioresources, 2015,10(3), 5820.
46 Xu D, Liu B, Zhang G, et al. High Performance Polymers, 2016,128(4),411.
47 Moosburger-Will J, Bauer M, Schubert F, et al. Surface and Coatings Technology, 2017, 311,223.
48 Hande Yavuz, Grégory Girard, Jinbo Bai, et al. Thin Solid Films, 2016,616, 220.
49 Song C L, Zhang Z T, Zhao W G, et al. Chemical Reaction Engineering and Technology, 2010, 26(2),112(in Chinese).
宋春莲,张芝涛,赵文光,等.化学反应工程与工艺,2010,26(2),112.
50 Xie P, Shu Q, Wang H W. Journal of Anhui Normal University(Natural Science), 2011,34(6),546(in Chinese).
解鹏,舒情,王红卫.安徽师范大学学报(自然科学版)2011,34(6),546.
51 Cheng W, Yang Y, Yin B, et al. China Plastics Industry, 2019,47(8), 133(in Chinese).
程旺,杨屹,尹波,等.塑料工业,2019,47(8),133.
52 Jamaliniya S, Samei N, Shahidi S. Journal of the Textile Institute, 2019,110(5), 647.
53 Zhang C M. Applied Surface Science, 2018,434, 198.
54 Zhang C M, Guo F S, Li H Y, et al. Applied Surface Science, 2019,490, 157.
55 Zhang R, Wang A. Journal of Cleaner Production, 2015, 87,961.
56 Shahidi S, Moazzenchi B. Fibers Polymer, 2019,20,1658.
57 Peng S J. Study on the influence of atmospheric pressure plasma treatment on the solubility of PVA film and the desizing effect of cotton fabric.Master's Thesis, Donghua University, China,2009(in Chinese).
彭淑静.常压等离子体处理对 PVA 薄膜溶解性能和棉织物退浆效果的影响研究.硕士学位论文,东华大学,2009.
58 Kan C W, Lam Y L. Fibers and Polymers, 2015, 16(8),1705.
59 Li Y, Moyo S, Ding Z, et al. Industrial Crops and Products, 2013, 51,299.
60 Zhang M, Pang J, Bao W, et al. Applied Surface Science, 2017, 419,16.
61 Špitalsky Z, Rástočná Illová D, Žigo O, et al. Fibers Polymer, 2019,20,1649.
62 Kan C W, Man W S. Polymers, 2018, 10(3), 233.
63 Zanini S, Grimoldi E, Citterio A, et al. Applied Surface Science, 2015, 349,235.
64 Zanini S, Citterio A, Leonardi G, et al. Applied Surface Science, 2017, 427,90.
65 Li S, Jinjin D. Applied Surface Science, 2007, 253(11),5051.
66 Li Y Q, Liu J Q. Journal of Textile Research, 2006, 27(6),8(in Chinese).
李永强,刘今强.纺织学报,2006,27(6),8.
67 Zanini S, Freti S, Citterio A, et al. Surface and Coatings Technology, 2016,292, 155.
68 Rani K V, Chandwani N, Kikani P, et al. The Journal of The Textile Institute, 2018,109(3), 368.
69 Fauland G, Constantin F, Gaffar H, et al. Journal of Applied Polymer Science, 2015, 132(3),41294.
70 Zhang C, Zhao M, Wang L, et al. Applied Surface Science, 2017, 400,304.
71 Li H Y, Fu J J, Wang H B, et al. Materials Repots, 2018, 32(4),626(in Chinese).
李宏英,傅佳佳,王鸿博,等.材料导报,2018,32(4),626.
72 Zhou C E, Kan C W. Applied Surface Science, 2015, 328,410.
73 Yu J, Pang Z, Zhang J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,548, 117.
74 Cerny P, Bartos P, Olsan P, et al. Current Applied Physics, 2019, 19(2),128.
75 Zhang Y, Li Y, Shao J, et al. Surface & Coatings Technology, 2015,276,16.
76 Zhang Y, Li Y Q, Shao J Z, et al. Journal of Textile Research, 2016(7), 99(in Chinese).
张严,李永强,邵建中,等.纺织学报,2016(7),99.
77 Li Y Q, Zhang Y, Zou C, et al. Applied Surface Science, 2015,357, 2327.
78 Yan X, Li J, Yi L. Materials Letters, 2017, 208(1),46.
79 Irfan M, Polonskyi O, Hinz A, et al. Cellulose, 2019,26, 8877.
80 Zhang Y F, Jia Q X, Wang X, et al. IOP Conference Series: Materials Science and Engineering, 2015, 87,012053.
81 Tsafack M J, Levalois-Grützmacher J. Surface & Coatings Technology, 2006, 200(11),3503.
82 Zhao R J,Wang W S, Zhu F F, et al. Desalination and Water Treatment, 2014, 56(9),1.
83 Correia D M, Ribeiro C, Botelho G, et al. Applied Surface Science, 2016, 371,74.
84 Jiang R, Chen H F. IOP Conference Series: Earth and Environmental Science, 2018,108, 022024.
85 Correia D M, Ribeiro C, Sencadas V, et al. Progress in Organic Coa-tings, 2015, 85,151.
86 Volkov V V,Ibragimov R G,Sh Abdullin I, et al. Journal of Physics: Conference Series, 2016, 751,012028.
87 Li M S, Zhao Z P, Wang M X. Applied Surface Science, 2016, 386(15),187.
88 Vasilkin D P, Shikova T G, Titov V A, et al. Journal of Physics: Confe-rence Series, 2017, 789,012068.
89 Li G H, Shi Y, Fu Z F, et al. Chemical Industry and Engineering Progress, 2013,32(9),2166(in Chinese).
李贵合,石艳,付志峰,等.化工进展, 2013,32(9), 2166.
90 Zheng Z, Wang W, Huang X, et al. Plasma Processes & Polymers, 2018,15,e1700122.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[3] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[4] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[5] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[6] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[7] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[8] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[9] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[10] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[11] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[12] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[13] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[14] 刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021, 35(17): 17163-17177.
[15] 王翊, 郭顺德, 刘元军, 赵晓明. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17): 17178-17184.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed