Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17178-17184    https://doi.org/10.11896/cldb.20010018
  无机非金属及其复合材料 |
铁磁材料/石墨烯复合吸波涂层织物的研究进展
王翊1, 郭顺德2, 刘元军1,3,4, 赵晓明1,3,4
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学艺术与服装学院,天津 300387
3 天津工业大学天津市先进纺织复合材料重点实验室,天津 300387
4 天津市先进纤维与储能技术重点实验室,天津 300387
Research Progress of Ferromagnetic Material/Graphene Composite Wave Absorbing Coating Fabrics
WANG Yi1, GUO Shunde2, LIU Yuanjun1,3,4, ZHAO Xiaoming1,3,4
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Art and Costume, Tiangong University, Tianjin 300387, China
3 Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
4 Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 2968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着信息时代的到来,电磁波在生活中无处不在,在给人们生活带来便利的同时,对人体健康的威胁也不容忽视,吸波织物可作为人类的保护衣,使其免受电磁波的危害。
铁磁材料是一种以磁滞损耗、涡流损耗等磁损耗为主,同时兼具部分介电损耗能力的吸波材料,具有吸收强度高、吸收频带宽的优点。然而其抗氧化性与酸碱性差、密度大、匹配厚度大、温度稳定性差,但可通过用其他材料包覆铁磁材料形成壳核结构,这样不仅提高了其抗氧化和耐腐蚀能力,而且壳核之间形成界面极化使吸波性能提高。石墨烯自面世以来受到了广大学者的关注,其比表面积大、表面原子比例高、悬挂键多,可通过界面极化和多重散射吸收电磁波,但正因为比表面积和分子间作用力过大,导致与其他物质复合时易团聚,限制了其应用。可用Hummers法制备氧化石墨烯,再用还原剂还原,得到有较多结构缺陷及含氧官能团残留、溶解性和分散性好的还原氧化石墨烯。将铁磁材料和石墨烯复合负载到织物上,可制备出双损耗、吸收频带宽的吸波涂层织物。大多数研究者将吸波材料的种类作为研究重点,而忽略了吸波涂层对吸波效果的影响。如可利用铁磁材料的磁性和易腐蚀性质,对涂层进行粗糙度处理,增强多重反射或形成活性位点,使涂层织物吸波性能得到进一步提高。
本文针对铁磁材料/石墨烯复合吸波涂层织物的研究现状,简述了铁磁材料和石墨烯的结构及吸波原理,重点阐述了铁磁材料和石墨烯吸波涂层负载到织物上的方法和研究进展,最后总结了吸波涂层优化方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王翊
郭顺德
刘元军
赵晓明
关键词:  铁磁材料  石墨烯  织物  吸波涂层    
Abstract: With the arrival of the information age, electromagnetic(EM) wave has been everywhere in our life. While it bringing convenience to people’s lives, the threat to human health cannot be ignored. EM wave absorbing fabric can be used to make protective clothing for human beings to protect them from the harm of EM waves.
Ferromagnetic materials are a kind of absorbing materials with magnetic loss(hysteresis loss, eddy current loss), and partial dielectric loss, which have the advantages of high absorption strength and wide absorption band. However, it has poor oxidation resistance and acid-base pro-perty, high density, large matching thickness, and poor temperature stability. By coating ferromagnetic materials with other functional materials to form a shell core structure, the oxidation resistance and corrosion resistance can be improved, the interfacial polarization between the shell cores can improve the wave absorption performance as well. Graphene has attracted the attention of scholars since its appearance. It has a huge specific surface area, a high proportion of atoms on the surface, and plenty of hanging bonds, it can absorb electromagnetic waves through interfacial polarization and multiple scattering. However, due to its excessive specific surface area and intermolecular forces, it is easy to agglomerate with other substances when recombined, which limits its application. Reduced graphene oxide is usually prepared by the Hummers method and then reduced by reducing agents, which have some structural defects and oxygen-containing functional group residues, solubility and dispersibility. The two excellent materials, ferromagnetic material and graphene, can be used to fabricate the absorbent coated fabric with double loss and a wide absorption band. Most researchers focus on the types of absorbing materials but ignore the effect of absorbing coating on absorbing effect. The magnetic and corrosivity properties of ferromagnetic materials can be used to treat the coating with roughness to enhance multiple reflections or form active sites, to further improve the absorbing performance of coated fabrics.
In this paper,based on the research status of ferromagnetic/graphene composite EM wave-absorbing coated fabrics, the structure and EM wave absorbing principle of ferromagnetic materials and graphene are briefly discussed; the methods and research progress of loading ferromagnetic materials and graphene absorbing coatings onto fabrics are described. Finally the optimization methods of the absorbing coating process are summarized.
Key words:  ferromagnetic material    graphene    fabric    absorbing coatings
                    发布日期:  2021-09-26
ZTFLH:  TS195.1  
基金资助: 中国博士后科学基金项目(2019TQ0181;2019M661030)
通讯作者:  1696653120@qq.com; liuyuanjunsd@163.com   
作者简介:  王翊,2019年6月毕业于天津工业大学,获得工学学士学位。现为天津工业大学纺织科学与工程学院硕士研究生,在刘元军老师的指导下进行研究。目前主要研究领域为吸波材料的制备及性能。发表SCI期刊论文4篇,中文核心期刊1篇。
郭顺德,天津工业大学艺术学院教师,主要从事服装专业教学和实践研究,与企业合作研发多项新产品,指导学生参加各类大赛多次获奖。
刘元军,天津工业大学纺织科学与工程学院副教授、硕士研究生导师,2016年毕业于天津工业大学,获工学博士学位,主要从事电磁防护材料研究。主持或参与12项科研项目,发表SCI期刊论文36篇,EI期刊论文11篇,以第一发明人申请了专利12项。
引用本文:    
王翊, 郭顺德, 刘元军, 赵晓明. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17): 17178-17184.
WANG Yi, GUO Shunde, LIU Yuanjun, ZHAO Xiaoming. Research Progress of Ferromagnetic Material/Graphene Composite Wave Absorbing Coating Fabrics. Materials Reports, 2021, 35(17): 17178-17184.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010018  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17178
1 Guo Y P. Preparation and study of absorbing properties of graphene/FeSiAl composites. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2018(in Chinese).
郭宇鹏. 石墨烯/FeSiAl复合材料的制备及吸波性能研究. 硕士学位论文, 西安建筑科技大学, 2018.
2 Liu Y J, Liu Y C, Zhao X M. Journal of the Textile Institute, 2018, 109(1), 106.
3 Liu Yuanjun, Zhao Xiaoming. Journal of the Textile Institute, 2017, 108(9), 1628.
4 Cai K. The synthesized and applied research of cobalt ferrite composite nanomaterials. Master’s Thesis, Beijing University of Chemical Techno-logy, China, 2018(in Chinese).
蔡凯. 钴铁氧体基复合纳米材料的制备及其应用研究. 硕士学位论文, 北京化工大学, 2018.
5 Liu Y J, Liu Y C, Zhao X M. Journal of the Textile Institute, 2017, 108(7), 1246.
6 Ma Y B. Preparation and properties of Fe3O4/rGO/PANI composite particles and the microwave absorption coatings. Master’s Thesis, North University of China, China, 2019(in Chinese).
马艺冰. Fe3O4/rGO/PANI复合粒子及其微波吸收涂层制备与性能研究. 硕士学位论文, 中北大学, 2019.
7 Li H X. Preparation and electromagnetic shielding properties of graphene/magnetic particles/resin matrix composites. Master’s Thesis, Tianjin University, China, 2018(in Chinese).
李会霞. 石墨烯/磁性颗粒/树脂基复合材料的制备及电磁屏蔽性能研究. 硕士学位论文, 天津大学, 2018.
8 Bai Y F. Preparation and microwave absorbing properties of graphene-based magnetic particle functional composites. Master’s Thesis, North University of China, China, 2019(in Chinese).
白永飞. 石墨烯基磁性功能粒子制备及吸波性能研究. 硕士学位论文, 中北大学, 2019.
9 Gu J D, Qiang T T, Xu W T, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6), 123(in Chinese).
谷江东, 强涛涛, 徐卫涛, 等. 重庆理工大学学报(自然科学), 2021, 35(6), 123.
10 Sun J R. Preparation and dielectric properties of polyaniline/graphene composite coated fabrics. Master’s Thesis, Tiangong University, China, 2019(in Chinese).
孙嘉瑞. 聚苯胺/石墨烯复合涂层织物的制备及介电性能研究. 硕士学位论文, 天津工业大学, 2019.
11 Liu Y J, Zhao X M, Xiao T. Journal of the Textile Institute, 2017, 108(4), 483.
12 Liu Y J, Zhao X M, Tuo X. Journal of the Textile Institute, 2017, 108(5), 829.
13 Liu Y J, Zhao X M. Fibres & Textiles in Eastern Europe,2016,24(3),67.
14 Liu Y J, Zhao X M. Fibres & Textiles in Eastern Europe,2017,25(6),96.
15 Song Z Z. Preparation and properties of W-type strontium ferrite and mo-dified wave absorbing materials. Master’s Thesis, Shandong University, China, 2018(in Chinese).
宋转转. W型锶铁氧体及改性吸波材料的制备和性能研究. 硕士学位论文, 山东大学, 2018.
16 Ren Z W. Anti-oxidation treatment of carbonyl iron powders and its microwave absorption properties. Master’s Thesis, Xi’an Technological University, China, 2018(in Chinese).
任朝闻. 羰基铁粉的抗氧化处理及其吸波性能. 硕士学位论文, 西安工业大学, 2018.
17 Jia K, Wang D H, Li K X, et al. Materials Reports A:Review Papers, 2019, 33(3), 806(in Chinese).
贾琨, 王东红, 李克训, 等. 材料导报:综述篇, 2019, 33(3), 806.
18 Wang X Y, Zhang Y X, Sun J C. Journal of Xi’an Polytechnic University, 2017, 31(2), 152(in Chinese).
王小燕, 张一心, 孙见成. 西安工程大学学报, 2017, 31(2), 152.
19 Esen M, Ilhan I, Karaaslan M, et al.Applied Nanoscience, 2020, 10(2), 551.
20 Tan X Q, Liu J Y, Liu J Y, et al. Knitting Industries, 2018(1), 37(in Chinese).
谭学强, 刘建勇, 刘佳音, 等. 针织工业, 2018(1), 37.
21 Yu F B, Xia X H, Geng Q J, et al. Electroplating & Finishing, 2008, 27(6), 34(in Chinese).
余凤斌, 夏祥华, 耿秋菊, 等. 电镀与涂饰, 2008, 27(6), 34.
22 Nam Y W, Choi J H, Huh J M, et al.Journal of Composite Materials, 2018, 52(10), 1413.
23 Nam Y W, Choi J H, Lee W J, et al.Composites Science and Technology, 2017, 145, 165.
24 Ding X D, Wang W, Wang Y, et al.Journal of Alloys and Compounds, 2019, 777, 1265.
25 Hoghoghifard S, Mokhtari H.Journal of Industrial Textiles, 2019, 49(3), 403.
26 Su Y. Shandong Chemical Industry, 2019, 48(15), 55(in Chinese).
苏毅. 山东化工, 2019, 48(15), 55.
27 Wen J, Ding Z R, Zhang Y Q, et al. Journal of Textile Research, 2014, 35(5), 61(in Chinese).
温娇, 丁志荣, 张琰卿, 等. 纺织学报, 2014, 35(5), 61.
28 Wang Y, Wang W, Yu D. Applied Surface Science, 2017, 425, 519.
29 Zhang R Q, Zhang B Y, Dou W J. Fibers and Polymers, 2019, 20(7), 1396.
30 Ding X D, Wang Y, Xu R, et al. Cellulose, 2019, 26(13-14), 8209.
31 Zheng Y L, Wang J M, Shi Y, et al. Dyeing & Finishing, 2019, 45(16), 8(in Chinese).
郑云龙, 王进美, 石煜, 等. 印染, 2019, 45(16), 8.
32 Zhao Y T, Sun X T, Zhao H T, et al. Materials Letters, 2019, 239, 9.
33 Wu W, Zhang H X, Ma H, et al. Journal of Engineered Fibers and Fabrics, 2017, 12(3), 1.
34 Sabyasachi G, Sayan G, Poushali D, et al. Fibers and Polymers, 2019, 20(6), 1162.
35 Liu Y J, Liu X L, Zhang Y Q, et al. Journal of Textile Science and Engineering, 2019, 36(2), 2(in Chinese).
刘元军, 刘旭琳, 张一曲, 等. 纺织科学与工程学报,2019,36(2),2.
36 Kumar J, Basu B, Talukdar F A, et al.IEEE Antennas and Wireless Pro-pagation Letters, 2018, 17(10), 1862.
37 Jang E J, Liu H, Cho G.Textile Research Journal, 2019, 89(23-24), 4981.
38 Song B, Jin T, Wang D J, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(18), 17137.
39 Li J, Bi S, Mei B, et al. Journal of Alloys and Compounds, 2017, 717, 205.
40 Cheng W L, Zhao Q L, Shi F. Applied Physics A Materials Science & Processing, 2017, 123(4), 221.
41 Mohammad M. Fibers and Polymers, 2016, 17(10), 1580.
42 Liu Y J, Zhao X M, Tuo X. Journal of the Textile Institute, 2016, 107(4), 483.
43 Yu Q, Wang Y Y, Chen P, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(15), 1448.
44 Wu M, Qi X S, Xie R, et al. Journal of Alloys and Compounds, 2020, 813, 151996.
45 Chu H R, Zeng Q, Chen P, et al. Journal of Alloys and Compounds, 2017, 719, 296.
46 Wen G S, Zhao X C, Liu Y, et al. Chemical Engineering Journal, 2019, 37, 2.
47 Peng Z. Preparation and microwave absorption properties of Fe3O4@BaTiO3/RGO composites. Master’s Thesis, Nanjing University of Science and Technology, China, 2016(in Chinese).
彭铮. Fe3O4@BaTiO3/RGO复合材料的制备及其吸波性能的研究. 硕士学位论文, 南京理工大学, 2016.
48 Yuan Y, Yin W L, Yang M L, et al.Carbon, 2018, 130, 60.
49 Zheng H. Preparation of iron family amorphous and electromagnetic microwave absorbing properties. Master’s Thesis, Zhejiang Normal University, China, 2018(in Chinese).
郑豪. 铁族非晶材料的制备及其吸波性能研究. 硕士学位论文, 浙江师范大学, 2018.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[6] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[7] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[8] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[9] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[10] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[11] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[12] 彭卓, 朱德举, 史才军, 郭帅成, 李宁. 玄武岩织物增强碱激发矿渣粉煤灰水泥砂浆的耐久性研究[J]. 材料导报, 2021, 35(16): 16058-16064.
[13] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[14] 陈利尧, 赵晓明. 柔性X射线防护材料的研究现状及展望[J]. 材料导报, 2021, 35(15): 15088-15093.
[15] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed