Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12190-12195    https://doi.org/10.11896/cldb.20060194
  高分子与聚合物基复合材料 |
层层自组装法制备超疏水/超亲油棉织物及其油水分离性能
杨福生1, 张振宇1, 李云清1, 陈永哲1, 任永忠1, 马乐1, 杨武2
1 兰州工业学院土木工程学院,兰州 730050
2 西北师范大学化学化工学院生态环境相关高分子材料教育部重点实验室,兰州 730070
Fabrication of Superhydrophobic-Superlipophilic Cotton Fabric by Layer Self-assembly Method and Its Oil-water Separation Performance
YANG Fusheng1, ZHANG Zhenyu1, LI Yunqing1, CHEN Yongzhe1, REN Yongzhong1, MA Le1, YANG Wu2
1 School of Civil Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
2 Key Laboratory of Ecological-environment-related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 5635KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 被油污染的水资源严重影响人类健康和生态系统。为得到具有优异油水分离性能的材料,利用层层自组装法,在棉织物表面组装纳米银薄层,随后用十二烷基硫醇修饰,制备了具有超疏水/超亲油性能的棉织物。通过扫描电子显微镜、X射线衍射仪、接触角测试仪、分离效率表征超疏水/超亲油棉织物的微观形貌、表面化学组成、润湿性及油水分离性能。改性后的棉织物表面负载致密的纳米银薄层,水在该表面的接触角高达160°,而油的接触角为0°,显示出其良好的超疏水/超亲油性能;纳米银牢固地附着在棉织物的表面,使其表现出良好的抗磨损性、耐腐蚀性。油水分离测试显示,该棉织物对不同类型油品和水混合物的分离效率达88%以上,且具有较好的循环利用性。此外,该棉织物不仅能分离水上轻油、水下沉油,还能分离轻油-水-沉油三相所形成的混合物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨福生
张振宇
李云清
陈永哲
任永忠
马乐
杨武
关键词:  棉织物  超疏水  超亲油  纳米银  油水分离    
Abstract: Water resources polluted by oil seriously affect human health and ecosystem. In order to obtain materials with excellent oil-water separation performance, assembling nanometre silver thin layer on the surface of cotton fabric by layer self-assembly method, and modified it with dodecyl mercaptan, then cotton fabric with superhydrophobic-superoleophilic performance is prepared. The microstructure, surface chemical composition, wettability and oil-water separation performance of superhydrophobic- superlipophilic cotton fabric are characterized by scanning electron microscope, X-ray diffractometer, contact angle tester and separation efficiency. The modified cotton fabric is loaded up with dense nano silver layers, the water contact angle is up to 160° and the oil contact angle is 0° on the surface, showing excellent superhydrophobic-superlipophilic performance. Nano-silver is firmly attached to the surface of cotton fabric, showing fine wear resistance and corrosion resistance. The oil-water separation test shows that the cotton fabric not only have a good recycling ability,but also having separation efficiency of different types of oil and water mixtures, and separation efficiency is over 88%. In addition, the cotton fabric can not only separate light oil on water and water sinking oil from water, but also can separate the mixture formed by three phases of light oil-water-sinking oil.
Key words:  cotton fabric    superhydrophobic    superoleophilic    nano silver    oil-water separation
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG174.451  
  O647.5  
基金资助: 2020年度甘肃省省级重点人才项目;甘肃省陇原青年创新创业人才(团队)项目(2020RCXM196);甘肃省高等学校产业支撑项目(2020C-30);甘肃省高等学校创新能力提升项目(2019B-180;2020A-149);国家级大学生创新创业训练计划项目(202011807007);兰州工业学院青年科技创新项目(2020KJ-12;2020KJ-14);兰州工业学院“启智”人才培养计划基金(2019QZ-05;2020QZ-03)
通讯作者:  zhzhyu428@163.com;2313907790@qq.com   
作者简介:  杨福生,2013年6月毕业于西北师范大学,获得理学硕士学位。于2014年10月至今在兰州工业学院任教,主要从事功能材料领域的研究。
杨武,西北师范大学,教授,博士研究生导师。1998年7月毕业于中国科学兰州化学物理研究所,获理学博士学位。德国马普高分子研究所(美因兹)博士后。主要从事纳米材料、功能材料的制备和表征以及应用研究。发表SCI收录100余篇,申报发明专利8余项,出版专著2部,教材1部。
张振宇,工学博士,教授。2007年5月进入中国科学院兰州化学物理研究所固体润滑国家重点实验室从事博士后研究工作。主要从事耐磨损材料的制备及应用研究。主持和参与国家自然科学资金项目10余项,发表SCI论文30余篇,被邀请为国际材料期刊Tribology Internatio-nal、Suface & Coatings Technology审稿人。
引用本文:    
杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
YANG Fusheng, ZHANG Zhenyu, LI Yunqing, CHEN Yongzhe, REN Yongzhong, MA Le, YANG Wu. Fabrication of Superhydrophobic-Superlipophilic Cotton Fabric by Layer Self-assembly Method and Its Oil-water Separation Performance. Materials Reports, 2021, 35(12): 12190-12195.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060194  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12190
1 Liu S Z, Liu N, Xiao W Y, et al. Chemical Research in Chinese Universities, 2020, 41(3), 521(in Chinese).
刘帅卓, 刘宁, 肖文艳,等. 高等学校化学学报, 2020, 41(3), 521.
2 Yu T L, Lu S X, Xu W G. Journal of Alloys and Compounds, 2018, 769, 576.
3 Zhao W J, Xiao X Y, Pan G M, et al. Journal of Coatings Technology and Research, 2020, 17(3), 657.
4 Zhang T, Xiao C F, Zhan J, et al. ACS Omega, 2019, 4, 7237.
5 Seth M, Khan H, Bhowmik R, et al. Journal of Sol-Gel Science and Technology, 2020, 94, 127.
6 Ge B, Ren G N, Zhao P F, et al. Science China-Technological Sciences, 2019, 62(12), 2236.
7 Yang M P, Liu W Q, Liang L Y, et al. Cellulose, 2020, 27, 2847.
8 Zhang D G, Li L H, Wu Y L, et al. China Surface Engineering, 2019, 32(1), 31(in Chinese).
张东光, 李陵汉, 吴亚丽, 等. 中国表面工程, 2019, 32(1), 31.
9 Wang B, Lei B H, Tang Y, et al. Journal of Coatings Technology and Research, 2018, 15(3), 611.
10 Hu J T, Gao Q H, Xu L, et al. Fibers and Polymers, 2018, 19(7), 1522.
11 Jiang C, Liu W Q, Yang M P, et al. Journal of Materials Science, 2019, 54, 7369.
12 Liu G Y, Wang W, Yu D. Cellulose, 2019, 26,3529.
13 Li G Q, Mai Z H, Shu X, et al. Advanced Composites and Hybrid Mate-rials, 2019,n2, 254.
14 Mai Z H, Shu X, Li G Q, et al. Cellulose, 2019, 26, 6349.
15 Yang J, Pu Y, He H W, et al. Cellulose, 2019, 26,7507.
16 Yang F S, Zhang Y, Liu X B, et al. Materials Review B: Research Papers, 2020, 34(2), 4132(in Chinese).
杨福生, 张妍, 刘小斌,等. 材料导报:研究篇, 2020, 34(2), 4132.
17 Dashairya L, Barik D D, Saha P J. Journal of Coatings Technology and Research, 2019, 16(4), 1021.
18 Wang M, Peng M, Weng Y X, et al. Cellulose, 2019, 26, 8121.
19 Satilmis B, Uyar T. ACS Applied Nano Materials, 2018, 1(4), 1631.
20 Su X J, Li H Q, Lai X J, et al. ACS Applied Materials & Interfaces, 2017, 33(9), 28089.
21 Jiang H J, Zhang L, Chen J, et al. ACS Nano, 2017, 11(12), 12453.
22 Yu Z P, Zhan B, Dong L M, et al. ACS Applied Nano Materials, 2019, 2(3), 1505.
23 Zhan Z B, Li Z, Yu Z, et al. ACS Omega, 2018, 12(3), 17425.
24 Dimitrakellis P, Patsidis A C, Smyrnakis A,et al. ACS Applied Nano Materials, 2019, 2(5), 2969.
25 Zhang G D, Wu Z H, Xia Q Q, et al. ACS Applied Materials & Interface, 2021, 13(19), 23161.
26 Zhao X, Hao H, Duan Y P, et al. Progress in Organic Coatings, 2019, 135, 417.
27 Li X Y, Zhao S P, Hu W H, et al. Applied Surface Science, 2019, 481, 374.
28 Zhou X, Yu S R, Wang J, et al. Journal of the Taiwan Institute of Che-mical Enginerrs, 2019, 105, 124.
29 Liu S M, Cai T L, Shen X Y, et al. Ceramics International , 2019, 45(17), 21263.
30 Li Y S, Jian J, Jia C S. Langmuir, 2008, 24(18), 9962.
31 Sun Y H, Huang J X, Gao Z G. Chemical Communications, 2019, 55, 13876.
32 Wang Z C, Liu X Q, Guo J, et al.Chemical Communications, 2019, 55, 14486.
33 Wang L, Liu C Y, Huang Q M, et al. Soft Matter, 2019, 15, 9066.
34 Wang Q Z, Liu Y N, Bai Y W, et al. Analytica Chimica Acta, 2019, 1049, 170.
35 Hassan N, Lu S X, Xu W G, et al. Journal of Solid State Chemistry, 2018, 266, 121.
36 Lv Y F, Li Q R, Hou Y T, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 15002.
37 Hou K, Jin Y, Chen J H, et al. Materials Letters, 2017, 202, 99.
38 Lin Y L, Yi P, Yu M G, et al. Materials Letters, 2018, 230, 219.
39 Liu P S, Niu L Y, Tao X H, et al. Applied Surface Science, 2018, 447, 656.
40 Li J, Kang R, Zhang Y. RSC Advances, 2016, 6, 90824.
41 Guo Z, Zheng X, Tian D. Nanoscale, 2014, 6, 12822.
[1] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[2] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[3] 张争奇, 强亚奎, 张世豪, 王东, 赵富强. 沥青路面超疏水抗凝冰涂层设计及性能[J]. 材料导报, 2021, 35(10): 10073-10079.
[4] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[5] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[6] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[7] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[8] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[9] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[10] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[11] 高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
[12] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[13] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[14] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[15] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed