Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17099-17104    https://doi.org/10.11896/cldb.19100108
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用
刘帅卓1,2, 张颖2, 范雷倚2, 张骞1,2, 周莹1,2
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学材料科学与工程学院,新能源材料及技术研究中心,成都 610500
Activated Carbon/PTFE Modified Melamine Sponge and Its Application in Oil-Water Separation
LIU Shuaizhuo1,2, ZHANG Ying2, FAN Leiyi2, ZHANG Qian1,2, ZHOU Ying1,2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, , Southwest Petroleum University, Chengdu 610500, China
2 The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 5158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 如何治理含油废水带来的污染已成为目前困扰全球的严峻问题。传统油水分离材料在性能、成本、制备等方面的缺陷制约了其实际应用。因此,性能优异、成本低廉、制备简便的新型油水分离材料的研究引起了广泛关注。本研究首先将粉末活性炭(AC)与具有低表面能的聚四氟乙烯浓缩分散液(PTFE)混合,制备出新型涂料(AC/PTFE);然后将它浸涂包裹在三聚氰胺海绵(MS)的骨架上,再通过简单的热处理,即可制备出新型三维油水分离材料(AC/PTFE-MS)。性能测试结果表明,所制备的AC/PTFE-MS具有超疏水性(疏水角可达165°),在300次挤压后依然保持这种性能。同时,AC/PTFE-MS具有高的吸附倍率,能够选择性吸附水上浮油与水下重油,还可实现对油水混合乳液的高效分离,是一种具有较高实际应用价值的含油废水治理材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘帅卓
张颖
范雷倚
张骞
周莹
关键词:  油水分离  三聚氰胺海绵  超疏水  乳液涂料    
Abstract: How to treat the pollution caused by oily wastewater has become a serious worldwide problem. The shortcomings of traditional oil-water separation materials in terms of performance, cost, and preparation have limited their application in practice. Therefore, exploration of novel oil-water separation materials with excellent performance, low cost, and simple preparation have attracted widespread attention. In this work, a novel coating (AC/PTFE) was firstly prepared by mixing activated carbon (AC) powder with polytetrafluoroethylene concentrated dispersion (PTFE). Then melamine sponge (MS) was dip-coated with this coating, and after a simple heat treatment process, the three-dimensional oil-water separation material (AC/PTFE-MS) was prepared. The performance test results show that AC/PTFE-MS is superhydrophobic (water contact angle up to 165°), and this property can maintain even after 300 extrusions. Meanwhile, AC/PTFE-MS has high adsorption capacity and can also selectively adsorb oil or organic pollutants from water. Moreover, it can also efficiently separate oil-water emulsion. Thus, this three-dimensional oil-water separation material has application value in the actual oily wastewater treatment.
Key words:  oil/water separation    melamine sponge    superhydrophobic    emulsion coating
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG113.25  
基金资助: 国家自然科学基金石油化工联合基金(U1862111);四川省国际科技合作与交流研发项目(2017HH0030);四川省青年科技创新研究团队专项计划(2016TD0011)
通讯作者:  zhangqian@swpu.edu.cn;yzhou@swpu.edu.cn   
作者简介:  刘帅卓,西南石油大学硕士研究生,材料科学与工程专业,主要从事油水分离材料和乳液分离材料的研究。
张骞,西南石油大学材料科学与工程学院副教授。2011年毕业于重庆大学,获材料学博士专业学位。同年加入西南石油大学材料科学与工程学院工作至今,主要从事污水处理、光催化空气净化等研究。
周莹,西南石油大学材料科学与工程学院教授。2010年获瑞士苏黎世大学(UZH)博士学位,之后获得苏黎世大学优秀青年基金资助从事博士后研究,并在洪堡基金会的资助下在德国卡尔斯鲁厄理工学院(KIT)从事研究工作。主要从事油气资源清洁利用与污染治理材料研究。
引用本文:    
刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
LIU Shuaizhuo, ZHANG Ying, FAN Leiyi, ZHANG Qian, ZHOU Ying. Activated Carbon/PTFE Modified Melamine Sponge and Its Application in Oil-Water Separation. Materials Reports, 2020, 34(17): 17099-17104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100108  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17099
1 Joye S B. Science, 2015, 349(6248),592.
2 Leschine T M. Spill Science & Technology Bulletin, 2002, 7(1), 63.
3 Olita A, Cucco A, SimeoneI S, et al. Ocean & Coastal Management, 2012, 57(57),44.
4 Buist I, Nedwed T. International Oil Spill Conference Proceedings, 2011, 2011(1), 231.
5 Bayat A, Aghamiri S F, Moheb A, et al. Chemical Engineering & Technology, 2005, 28(12), 1525.
6 Xue Z, Sun Z, Cao Y, et al. RSC Advances, 2013, 3(45), 23432.
7 Head I M, Swannell R P J.Current Opinion in Biotechnology, 1999, 10(3), 234.
8 Wang H, Chen E, Jia X, et al. Applied Surface Science, 2015, 349, 724.
9 Zhang S, Li Q, Liu Y, et al. High Performance Polymers, 2016, 29(1), 104.
10 Gong Z, Alef K, Wilke B M, et al. Journal of Hazardous Materials, 2007, 143(1), 372.
11 Sun H, Li A, Zhu Z, et al. ChemSusChem, 2013, 6(6), 1057.
12 Wan W, Lin Y, Prakash A, et al. Journal of Materials Chemistry A, 2016, 4(48),18687.
13 Liu Q, Meng K, Ding K, et al. ChemPlusChem, 2015, 80(9), 1435.
14 Zhang Y, Zhang Q, Zhang R, et al. New Journal of Chemistry, 2019, 43(16), 6343.
15 Wang Z T, Xiao C F, Zhao J, et al. Chemical Journal of Chinese Universities, 2014, 35(11), 2410(in Chinese).
王子涛, 肖长发, 赵健,等.高等学校化学学报, 2014, 35(11), 2410.
16 Chen S, He G, Hu H, et al. Energy & Environmental Science, 2013, 6(8), 2435.
17 Pham V H, Dickerson J H. ACS Applied Materials & Interfaces, 2014, 6(16), 14181.
18 Qiu L, Zhang Y, Liu S, et al. Chemical Journal of Chinese Universities, 2018, 39(12), 2758.
19 Ge J, Shi L A, Wang Y C, et al.Nature Nanotechnology, 2017, 12(33),434.
20 Ruan C, Ai K, Li X, et al. Angewandte Chemie, 2014, 126(22), 5662.
21 Gong D L, Zhang B, Xue Q J, et al. Wear, 1990, 137(1), 25.
22 Zhang Y H, Song J P, Xiao J Z. Journal of Mechanical Engineering, 2006, 30(4), 76(in Chinese).
张雁鸿, 索进平, 肖建中.机械工程材料, 2006, 30(4), 76.
23 Merline D J, Vukusic S, Abdala A A. Polymer Journal, 2012, 45(1), 413.
24 Biniak S, Szymański G, Siedlewski J, et al. Carbon, 1997, 35(12), 1799.
25 Koti Reddy C, Shailaja D. Journal of Applied Polymer Science, 2015, 132(47), 42779.
26 Yan F Y, Xue Q J. Chinese Science Bulletin, 1997, 42(3), 282(in Chinese).
   阎逢元, 薛群基.科学通报, 1997, 42(3), 282.
27 Devallencourt C, Saiter J M, Fafet A, et al. Thermochimica Acta, 1995, 259(1),143.
28 Liang X X, Wei, Zhang X P. Chemical Industry and Engineering, 2008, 25(4), 314.
29 Li H, Zeng H Y, Xing Z, et al. Acta Polymerica Sinica, 2016, 9), 1247.
30 Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25(18), 2554
31 Qiu L, Zhang R, Zhang Y, et al. Frontiers of Chemical Science and Engineering, 2018, 12(3), 390.
32 Wan W, Zhang R, Li W, et al. Environmental Science: Nano, 2016, 3(1), 107.
33 Wang H, Xu H, Jia W, et al. Journal of Dispersion Science and Technology, 2018, 39(4), 497.
34 Xu H, Jia W, Ren S, et al. Chemical Engineering Journal, 2018, 337, 10.
35 Xu H, Jia W, Ren S, et al. Carbon, 2019, 145, 229.
36 Wang J, Wang H, Geng G. Marine Pollution Bulletin, 2018, 127, 108.
[1] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[2] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[3] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[4] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[5] 高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
[6] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[7] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[8] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[9] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[10] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[11] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[12] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[13] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[14] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[15] 钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权. 镁合金超疏水表面的制备技术与应用研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 102-109.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed