Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3999-4007    https://doi.org/10.11896/cldb.18110136
  高分子与聚合物基复合材料 |
磁响应吸油材料的研究进展
梁光兵1, 李艳红1,2, 张远琴1, 訾昌毓1, 赵文波1, 张登峰1
1 昆明理工大学化学工程学院,昆明 650500
2 太原理工大学煤科学与技术省部共建国家重点实验室培育基地,太原 030024
Progress on Magnetically Responsive Oil Absorption Materials
LIANG Guangbing1, LI Yanhong1,2, ZHANG Yuanqin1, ZI Changyu1, ZHAO Wenbo1, ZHANG Dengfeng1
1 School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500
2 State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 4094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海洋环境中的石油污染物主要来自于原油开采和井喷、运输船舶的漏油以及输油管道的泄漏。随着全球能源消费的快速增长,石油的开采与运输也变得日益频繁。然而,在此过程中衍生出的石油污染问题也更加严峻。据估计,世界各地每年平均溢油量多达40万t。
大规模的海上溢油处理方法主要包括物理处理法、化学处理法和生物处理法三大方法。其中原位燃烧、分散剂降解等化学方法需要高昂的成本,并且会对环境造成二次破坏;微生物分解等生物方法对自然条件要求十分苛刻;使用机械装置(如撇油器或喷杆)的物理方法需要输入能量或在高压下进行操作。这些方法均不能充分满足对溢油处理的要求。
最近学者提出了一种利用磁改性超疏水/亲油的可浸湿吸油材料进行油水分离的方法。这些材料主要由粘土(二氧化硅)、沸石、活性炭、碳纳米管、聚合物、羊毛和秸秆等物质作为基材,通过四氧化三铁纳米颗粒的嵌入或涂覆以赋予材料磁响应特性。这些具有高孔隙率、高比表面积和丰富孔洞结构的吸附材料不但具有可设计调整性,而且经过磁性颗粒改性后,能够制备出在除油能力、油品回收和操作成本等方面均优于传统方法的磁性吸油材料。尤以聚合物为基材的磁响应吸油材料的研究最为广泛,被磁性纳米颗粒涂覆的聚合物海绵的吸油量最高可达50 g/g,且都具有近95%的吸油效率。其他材质的吸油材料也有所报道。这些磁性吸油材料具有三大特点:(1)吸油效率高,吸油量稳定;(2)固油性能好,吸附油不易脱附;(3)易回收,能够循环利用。
本文通过阐释吸附材料的磁改性和吸油机理,分析典型磁改性复合材料的吸油性能测试实验,指出各类吸油材料在溢油处理过程中的优势和局限。特别地提出了磁改性粉煤灰沸石吸油材料,概括了固体废物资源领域的最新研究热点,以期为国内相关研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁光兵
李艳红
张远琴
訾昌毓
赵文波
张登峰
关键词:  溢油  磁性  油水分离  吸油材料  回收  固废资源    
Abstract: The oil pollutants in the ocean mainly are from oil recovery and blowout, oil leakage from transport ships and oil pipelines. With the rapid growth of global energy consumption, oil extraction and transportation have become frequent. However, the problem derived from this process is also serious. It is estimated that the annual oil spill in the world is as high as 400 000 t on average.
Large-scale marine oil spill treatments mainly include three methods: physical treatment, chemical treatment and biological treatment. Among them, chemical methods such as in-situ combustion and dispersant degradation are high costs and secondary damage to the environment. Biolo-gical methods such as microbial decomposition are very demanding on natural conditions. Physical methods such as using mechanical devices (skimmers or booms ) require to input energy or high pressure operation. None of these methods adequately meet the requirements for oil spill treatment.
Recently, a method for oil-water separation which used a magnetically modified superhydrophobic/lipophilic oil absorption material has been originally proposed. These materials are mainly composed of clay (silica), zeolite, activated carbon, carbon nanotubes, polymers, wool and straw. The magnetic response of the material are imparted by embedding or coating of the ferric oxide nanoparticles. Adsorbent materials which have high porosity, high specific surface area and rich pore structure can be designed and prepare magnetic oil absorption materials that are superior to traditional methods in oil removing, oil recovery and operating cost after magnetic particles modified. The magnetically oil absorption materials based on polymers are the most widely studied. The polymer sponge coated with magnetic nanoparticles can absorb up to 50 g/g, and all have an efficiency close to 95%. Other materials have also been reported. These magnetic oil absorption materials have three major characteristics: (1) high oil absorption efficiency and stable oil absorption; (2) oil-locking performs well and adsorbed oil is difficult to desorb; (3) easy to recycle and reuse.
This review explains the mechanism of oil absorption and magnetic modification, analyzing oil absorption tests and recycling experiments of typical magnetic oil absorption materials, advantages and disadvantages of various types of oil absorption materials in the process of oil spill are poin-ted out. Among them, fly ash zeolites which are magnetically modified have been specially proposed. Latest research in the field of solid waste resources is put forward. Hope to be significant for relevant fields in China.
Key words:  oil spill    magnetic    oil-water separation    oil absorption materials    recycle    solid waste resources
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TE992.4  
基金资助: 国家自然科学基金(21766013);国家级大学生创新创业训练计划项目(201710674111);昆明理工大学分析测试基金(2016T20070105)
作者简介:  梁光兵,2018年6月毕业于东北石油大学,获得理学学士学位。现为昆明理工大学化学工程学院硕士研究生,在李艳红导师的指导下进行研究。目前主要研究领域为磁响应油水分离材料。
李艳红,昆明理工大学化学工程学院讲师、硕士研究生导师。2004年7月本科毕业于信阳师范学院化学化工学院,2007年7月毕业于太原理工大学煤科学与技术重点实验室,现在太原理工大学攻读博士学位。主要从事能源化工的研究,主要研究方向有生物质、煤化工、石油化工,出版《石油加工专业实验》《煤化工专业实验》等教材3部,发表论文30余篇。
引用本文:    
梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
LIANG Guangbing, LI Yanhong, ZHANG Yuanqin, ZI Changyu, ZHAO Wenbo, ZHANG Dengfeng. Progress on Magnetically Responsive Oil Absorption Materials. Materials Reports, 2019, 33(23): 3999-4007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110136  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3999
1 Sarbatly R, Krishnaiah D, Kamin Z. Marine Pollution Bulletin,2016,106(1-2),8.2 Chen M, Jiang W, Wang F, et al. Applied Surface Science,2013,286(12),249.3 Wang L N. Applied basic study on the bioremediation technology in oil-contaminated marine shorelines. Ph.D. Thesis, Ocean University of China, China,2013(in Chinese).王丽娜.海洋近岸溢油污染微生物修复技术的应用基础研究.博士学位论文,中国海洋大学,2013.4 Gupta R K, Dunderdale G J, England M W, et al. Journal of Materials Chemistry A,2017,5(31),16025.5 Ifelebuegu A O, Johnson A. Critical Reviews in Environmental Science & Technology,2017,47(11),964.6 Peng Y, Guo Z. Journal of Materials Chemistry A,2016,4(41),15749.7 Guo G L, Liu L B, Dang Z, et al. Nano,2017,12(4),1.8 Ma Q, Cheng H, Fane A G, et al. Small,2016,12(16),2186.9 Padaki M, Murali R S, Abdullah M S, et al. Desalination,2015,357,197.10 Zhang W, Liu N, Cao Y, et al. Advanced Materials Interfaces,2017,4(10),1700029.11 Kaiser R. U.S. patent, US3635819,1972.12 Moeser G D, Roach K A, Green W H, et al. Industrial & Engineering Chemistry Research,2002,41(19),4739.13 Chung J C. U.S. patent, US7591960B2,2009.14 Lee C H, Johnson N, Drelich, J, et al. Carbon,2011,49(2),669.15 Wu Y P, Zhou C L, Guo L J, et al. Acta Polymerica Sinica,2016,4,402.16 Wu Y P, Zhou C L, Xue S S, et al. Acta Polymerica Sinica,2017,3,516.17 Wu Y P, Yang H, Zhu S G, et al. Acta Polymerica Sinica,2016,11,1599.18 Yu L, Hao G, Gu J, et al. Journal of Magnetism & Magnetic Materials,2015,394,14.19 Tempesti P, Bonini M, Ridi F, et al. Journal of Materials Chemistry A,2014,2(6),1980.20 Zhu Q, Tao F, Pan Q. ACS Applied Materials & Interfaces,2010,2(11),3141.21 Bu Z, Zang L, Zhang Y, et al. RSC Advances,2017,7(41),25334.22 Sun Z, Wang L, Liu P, et al. Advanced Materials,2006,18(15),1968.23 Zhang L, Wu J, Wang Y, et al. Journal of the American Chemical Society,2012,134(24),9879.24 Zhang L, Li L, Dang Z M. Journal of Colloid & Interface Science,2016,463,266.25 Wang B, Liu Y, Zhang Y, et al. Advanced Materials Interfaces,2015,2(13),1500234.26 Palchoudhury S, Lead J R. Environmental Science & Technology,2014,48(24),14558.27 Ko S, Kim E S, Park S, et al. Journal of Nanoparticle Research,2017,19(4),132.28 Wang X, Shi Y, Graff R W, et al. Polymer,2015,72,361.29 Zhang S, Lu T, Qi D, et al. Materials Letters,2016,191,128.30 Xu L P, Wu X, Meng J, et al. Chemical Communications,2013,49(78),8752.31 Yang L, Wang Z, Yang L, et al. Industrial Crops & Products,2017,101,1.32 Du R, Feng Q, Ren H, et al. Journal of Materials Chemistry A,2016,4(3),938.33 Novio F, Ruiz-molina D. RSC Advances,2014,4(29),15293.34 Duan C, Zhu T, Guo J, et al. ACS Applied Materials & Interfaces,2015,7(19),10475.35 Zhang J, Shao Y, Hsieh C T, et al. Separation & Purification Technology,2017,174,312.36 Zhu Q. Fabrication and oil-water separation performance of superhydrophobic polyurethane (PU) sponges. Ph.D. Thesis, Harbin Institute of Technology, China,2014(in Chinese).祝青.超疏水聚氨酯(PU)海绵的制备及油水分离特性研究.博士学位论文,哈尔滨工业大学,2014.37 Xu L X. Fabrication of special wettable sponges and their application in oil/water separation. Ph.D. Thesis, Tsinghua University, China,2016(in Chinese).许亮鑫.特殊浸润性海绵的制备及油水分离应用研究.博士学位论文,清华大学,2016.38 Calcagnile P, Fragouli D, Bayer I S, et al. ACS Nano,2012,6(6),5413.39 Ge B, Zhu X, Li Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2015,482,687.40 Chen N, Pan Q. ACS Nano,2013,7(8),6875.41 Zhang X, Li Z, Liu K, et al. Advanced Functional Materials,2013,23(22),2881.42 Liu L, Lei J, Li L, et al. Materials Letters,2017,195,66.43 Wu L, Li L, Li B, et al. ACS Applied Materials & Interfaces,2015,7(8),4936.44 Beshkar F, Khojasteh H, Salavati-niasari M. Journal of Colloid & Interface Science,2017,497,57.45 Liu S, Xu Q, Latthe S. RSC Advances,2015,5(84),68293.46 Gui X, Zeng Z, Lin Z, et al. Applied Materials & Interfaces,2013,5(12),5845.47 Liu C, Yang J, Tang Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2015,468,10.48 Dudchenko A V, Rolf J, Shi L, et al. ACS Nano,2015,9(10),9930.49 Su C, Yang H, Song S, et al. Chemical Engineering Journal,2017,309,366.50 Yang Y. The fabrication of hydrophobic three-dimensional porous mate-rials and their applications in water/oil separation. Ph.D. Thesis, South China University of Technology, China,2015(in Chinese).杨宇.疏水性三维多孔材料的制备及其在油水分离中的应用.博士学位论文,华南理工大学,2015.51 Li Y, Zhu X, Ge B, et al. Applied Physics A,2015,120(3),949.52 Zhou S, Jiang W, Wang T, et al. Industrial & Engineering Chemistry Research,2015,54(20),5460.53 Liao Q, Su X, Zhu W, et al. RSC Advances,2016,6(68),63773.54 Korhonen J T, Kettunen M, Ras R H A, et al. ACS Applied Materials & Interfaces,2011,3(6),1813.55 Si Y, Fu Q, Wang X, et al. ACS Nano,2015,9(4),3791.56 Bi J H, Liu M H. Comprehensive utilization of fly ash resources, Chemical Industry Press, China,2018(in Chinese).毕进红,刘明华.粉煤灰资源综合利用,化学工业出版社,2018.57 Chen Y G, Lu J, Han H J, et al. Chemical Industry and Engineer Progress,2013,32(8),1905(in Chinese).陈彦广,陆佳,韩洪晶,等.化工进展,2013,32(8),1905.58 Chen Y G, Xu T T, Han H J. Chemical Industry and Engineer Progress,2015,34(8),2916(in Chinese).陈彦广,徐婷婷,韩洪晶,等.化工进展,2015,34(8),2916.59 Jin X. Research and engineering applications on the treatment of the production waste water using coal ash. Ph.D. Thesis, Ocean University of China, China,2009(in Chinese).靳辛.粉煤灰处理采油废水研究及工程应用.博士学位论文,中国海洋大学,2009.60 Wang W, Ye Z, Li F. Desalination & Water Treatment,2016,57(21),9644.61 Bandura L, Franus M, Jozefaciuk G, et al. Fuel,2015,147,100.62 Sakthivel T, Reid D L, Goldstein I, et al. Environmental Science & Technology,2013,47(11),5843.63 Belviso C, Agostinelli E, Belviso S, et al. Microporous & Mesoporous Materials,2015,202,208.64 Sodipo B K, Aziz A A. Journal of Magnetism & Magnetic Materials,2016,416(36),275.65 Zheng Y Y. Oily wastewater treatment and equipment, China Petrochemical Press, China,2014(in Chinese).郑远扬.含油污水处理与设备,中国石化出版社,2014.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[3] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[4] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[7] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[8] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[9] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[10] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[11] 肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[12] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[13] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[14] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[15] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed