Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 4008-4015    https://doi.org/10.11896/cldb.19010012
  高分子与聚合物基复合材料 |
羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展
晋艳茹, 贾庆明, 陕绍云
昆明理工大学化学工程学院,昆明 650224
Research Progress of Hydroxyapatite/Cellulose Composites in Bone TissueEngineering
JIN Yanru, JIA Qingming, SHAN Shaoyun
School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650224
下载:  全 文 ( PDF ) ( 2596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自从使用羟基磷灰石复合材料作为生物医用替代材料以来,其制备原料和制备工艺不断得到优化,现已制备出性能接近于天然骨的复合材料。但是羟基磷灰石复合材料还存在很多不足,例如抗压强度和弹性模量达不到天然骨的要求而导致其骨兼容性和骨整合较差,这些缺点严重阻碍了它作为骨替代物的发展。羟基磷灰石/纤维素复合材料不仅具有二者的特点,而且两材料协同产生的优异性能使其更加适用于生物组织工程材料。相比传统的骨替代材料,羟基磷灰石/纤维素复合材料在力学性能、生物活性、生物相容性、生物降解性等方面都有不同程度的改善,并且具有更好的成骨活性,已经基本达到理想组织工程应用的支架材料的要求。
在以纤维素为基底材料制备羟基磷灰石复合材料中,已经成功应用的纤维素类包括纳晶纤维素、细菌纤维素、羧甲基纤维素(CMC)等。但是不同的纤维素/羟基磷灰石复合材料之间也存在性能差异,有的纳米复合材料抗压强度较低,只有(1.57±0.09) MPa/cm3,但是有的纳米复合材料的抗压强度和模量都能接近天然骨。因此近几年来,研究者们除了不断优化制备工艺,主要还在选择合适的纤维素方面不断尝试,并取得了很大的进步。目前,已经有研究者发现CMC/明胶/羟基磷灰石纳米复合材料的抗压强度和模量与人松质骨和皮质骨相似,并且它也能促进细胞的高碱性磷酸酶活性和细胞外矿化,可作为主要承载区的再生骨移植材料。
本文介绍了羟基磷灰石与纤维素的特点,综述了各类羟基磷灰石/纤维素复合材料的制备方法以及研究现状,并对其性能进行了探讨,进而对羟基磷灰石/纤维素复合材料的研究发展前景予以展望,希望为制备性能更加良好的骨替代材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晋艳茹
贾庆明
陕绍云
关键词:  羟基磷灰石  纤维素  复合材料  骨组织工程    
Abstract: Since hydroxyapatite composites were used as biomedical substitutes, the raw materials and preparation technology of hydroxyapatite composites have been continuously optimized, and composites with properties close to natural bone have been prepared. However, there are still many deficiencies in the hydroxyapatite composite material, such as poor compatibility and poor bone integration due to the failure of the compressive strength and elastic modulus to meet the requirements of natural bone,which severely hinders its development as a bone substitute. Hydroxyapatite/cellulose composites not only have the characteristics of both, but also have excellent synergistic properties, which make them more suitable for bio-tissue engineering materials. Compared with traditional bone substitutes, HAP/cellulose composites have significant improvements in mechanical properties, biological activity, biocompatibility, biodegradability and other aspects, and have better osteogenic activity, which has basically met the requirements of ideal scaffold materials for tissue engineering applications.
Cellulose nanocrystal, bacterial nanocellulose, carboxymethyl cellulose (CMC), etc. have been found to be satisfactory as the base material for preparation of the hydroxyapatite composite material. However, there are differences in properties between different cellulose/hydroxyapatite composites. Some nanocomposites have low compressive strength, only (1.57±0.09)MPa/cm3, but some compressive strength and modulus of nanocomposites can be close to natural bones. Therefore, in recent years, in addition to constantly optimizing the preparation process, researc-hers have been trying to select suitable cellulose, and have made great progress. At present, researchers have found that the compressive strength and modulus of CMC/gelatin/HAP nanocomposites are similar to those of human cancellous and cortical bones, and they also promote high alkaline phosphatase activity and extracellular mineralization of cells. It can be used as a regenerative bone graft material for the main bearing area.
In this paper, the characteristics of HAP and cellulose are introduced. The preparation methods and the recent application and development of various HAP/cellulose composites are reviewed, and the properties of composites are also discussed, and the study and prospects of the hydroxyapatite/cellulose composites materials are presented. And we hope to provide a reference for the preparation of bone substitute materials with better properties.
Key words:  hydroxyapatite    cellulose    composites    bone tissue engineering
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TQ170  
基金资助: 国家自然科学基金(21766016;21566014;51364023);云南省后备人才项目(2015HB014)
作者简介:  晋艳茹,2016年6月毕业于昆明理工大学,获得工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在贾庆明教授和陕绍云教授的指导下进行研究。目前主要研究领域为化工环保材料。
陕绍云,昆明理工大学化学工程学院教授、博士研究生导师。同时也是云南省中青年学术技术带头人后备人才,校矿物生态环境功能陶瓷材料学科方向团队负责人。近年来,在化工环保领域发表论文20余篇,包括Journal of Hazardous Materials、Environmental Science and Pollution Research、Carbohydrate Polymers、Catalysis Communications等。
引用本文:    
晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
JIN Yanru, JIA Qingming, SHAN Shaoyun. Research Progress of Hydroxyapatite/Cellulose Composites in Bone TissueEngineering. Materials Reports, 2019, 33(23): 4008-4015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010012  或          http://www.mater-rep.com/CN/Y2019/V33/I23/4008
1 Palmer L C, Newcomb C J, Kaltz S R, et al. Cheminform,2009,40(6),4754.2 Rui M A D, Gomes M E, Rui L R. Biomacromolecules,2014,15(7),2327.3 Xiao W, Gao H, Qu M, et al. Ceramics International,2018,44(6),6144.4 Klinkaewnarong J, Utara S. Ultrasonics Sonochemistry,2018,46,18.5 Shi S, Chen S, Zhang X, et al. Journal of Chemical Technology & Biotechnology Biotechnology,2009,84(2),285.6 Hou Y, Shi Y, Gao Y, et al. Polymer Materials Science & Engineering,2014,30,4.7 Salerno A, Guarnieri D, Iannone M, et al. Tissue Engineering Parta,2010,16(8),2661.8 Hassan M N, Mahmoud M M, Abd El-Fattah A, et al. Ceramics International,2016,42(3),3725.9 Du H S, Liu C, Zhang M M, et al. Progress in Chemistry,2018(4),448(in Chinese).杜海顺,刘超,张苗苗,等.化学进展,2018(4),448.10 Kumar A, Negi Y S, Choudhary V, et al. Cellulose,2014,21(5),3409.11 He X, Fan X, Feng W, et al. International Journal of Biological Macromolecules,2018,115,385.12 Gao C, Xiong G Y, Luo H L, et al. Cellulose,2010,17(2),365.13 Narwade V N, Khairnar R S, Kokol V. Journal of Polymers & the Environment,2017(5),1.14 Guo W, Wang X, Zhang P, et al. Carbohydrate Polymers,2018,195,71.15 Tohamy K M, Mabrouk M, Soliman I E, et al. International Journal of Biological Macromolecules,2018,112,448.16 Hamad W Y, Zhu J Y, Zhang X, et al. ACS Symposium,2011,1067,301.17 Peng B L, Dhar N, Liu H L, et al. Canadian Journal of Chemical Engineering,2011,89(5SI),1191.18 Kelly J A, Giese M, Shopsowitz K E, et al. Accounts of Chemical Research,2014,47(4),1088.19 Si J, Ye J, Chen P, et al. Journal of Biobased Materials and Bioenergy,2018,12(4),387.20 Hokkanen S, Bhatnagar A, Repo E, et al. Chemical Engineering Journal,2016,283,445.21 Grande C J, Torres F G, Gomez C M, et al. Acta Biomaterialia,2009,5(5),1605.22 Hammonds R L, Harrison M S, Cravanas T C, et al. Cellulose,2012,19(6),1923.23 Jiang H J, Wang Y L, Jia S R, et al. Key Engineering Materials,2007,330,923.24 Lukasheva N V, Tolmachev D A. Langmuir: The ACS Journal of Surfaces & Colloids,2016,32(1),125.25 Morouco P, Biscaia S, Viana T, et al. Biomed Research International,2016,10,31.26 Arca H C, Mosquera-Giraldo L I, Bi V, et al. Biomacromolecules,2018,19(7),2351.27 Gouma P, Xue R, Goldbeck C P, et al. Materials Science & Engineering C,2012,32(3),607.28 Azzaoui K, Lamhamdi A, Mejdoubi E M, et al. Carbohydrate Polymers,2014,111(20),41.29 Hayder A, Hussain A, Khan A N, et al. Polymer Bulletin,2018,75(3),1197.30 Kim M H, Kim B S, Park H, et al. International Journal of Biological Macromolecules,2018,109,57.31 Tak W S, Kim D J, Ryu S C. Journal of the Korean Ceramic Society,2018,55(2),145.32 Mao D, Li Q, Bai N, et al. Carbohydr Polym,2018,180,104.33 Chahal S, Fathima S J H, Yusoff M B M. Bio-Medical Materials And Engineering,2014,24(2),1537.34 Qi P, Ohba S, Hara Y, et al. Carbohydrate Polymers,2018,189,322.35 Jiang H, Zuo Y, Zou Q, et al. Applied Materials & Interfaces,2013,5(22),12036.36 Sarkar C, Kumari P, Anuvrat K, et al. Journal of Materials Science,2018,53(1),230.37 Agis H, Beirer B, Watzek G, et al. Journal of Biomedical Materials Research Parta,2010,95A(2),504.38 Trojani C, Weiss P, Michiels J F, et al. Biomaterials,2005,26(27),5509.39 Xu Y, Zhang J, Ma Y, et al. Cytotechnology,2014,66(5),779.40 Iqbal H, Ali M, Zeeshan R, et al. Colloids & Surfaces B Biointerfaces,2017,160,553.41 Zhou J, Zhang L. Polymer Journal,2000,32(10),866.42 He M, Chang C, Peng N, et al. Carbohydrate Polymers,2012,87(4),2512.43 Fu L H, Qi C, Liu Y J, et al. Scientific Reports,2018,8(1),8292.44 Maehara K, Doi K, Matsushita T, et al. Materials Transactions,2002,43(12),2936.45 Mediaswanti K, Truong V K, Hasan J, et al. Key Engineering Materials,2012,520,214.46 Chen W. Orthopaedic Biomechanics Materials and Clinical Study,2005(6),5(in Chinese).陈文.生物骨科材料与临床研究,2005(6),5.47 Shang W B. Study on properties of manganese-doped porous bone-like material of beta-tricalcium phosphate. Master’s Thesis, Jilin University, China,2016(in Chinese).尚文博.锰掺杂β-磷酸三钙多孔仿骨材料性能研究.硕士学位论文,吉林大学,2016.48 Rerikh V V, Avetisyan A R, Zaydman A M, et al. AIP Conference Proceedings,2016,1760(1),020055.49 Mao W W, Ru J Y. Chinese Journal of Tissue Engineering Research,2018(30),4855(in Chinese).毛文文,茹江英.中国组织工程研究,2018(30),4855.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed