Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2174-2183    https://doi.org/10.11896/cldb.18040198
  无机非金属及其复合材料 |
核壳磁性纳米粒子在环境治理中的应用进展
肖治国,成岳,唐伟博,余宏伟
景德镇陶瓷大学材料科学与工程学院,景德镇 333403
Research Progress on Core-shell Magnetic Nanoparticles in Environmental Governance
XIAO Zhiguo, CHENG Yue, TANG Weibo, YU Hongwei
School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403
下载:  全 文 ( PDF ) ( 17263KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核壳磁性纳米粒子是一类具有核壳结构的磁性纳米粒子。它的核壳型结构使其易于被功能化而满足不同场合下的要求;它的纳米级尺寸使其拥有高比表面积;它的磁性使其易于被永磁体回收再利用。目前核壳磁性纳米粒子被广泛应用于生物研究、医疗卫生及催化等方面。在环境修复的研究中,这种材料达到了吸附剂的要求,将是未来废水处理的理想材料之一。
核壳磁性纳米粒子的制备方法多种多样,合适的制备方法更有利于达到高效去除污染物的目的。核与壳的制备顺序对实验条件的要求各不相同;核与壳的制备方法各有差别;不同制备方法的组合对核与壳尺寸的影响也有差异。核壳磁性纳米粒子对污染物的吸附能力、自身在环境中存在的潜在风险和附加设施对环境的影响引人注目。
目前核壳磁性纳米粒子的制备方法中,以从核到壳的顺序为主。磁核的制备以化学共沉淀法、溶剂热法居多,壳层的制备以St ber法、溶胶-凝胶法居多,化学共沉淀法与St ber法的组合逐渐成为制备Fe3O4@SiO2的经典方法之一。核壳磁性纳米粒子可高效去除多种污染物,包括有机污染物和重金属离子等,吸附过程大多符合Langmuir吸附等温模型和伪二级动力学模型。少量的核壳磁性纳米粒子对生态环境的危害较小,过量的核壳磁性纳米粒子则会对生物细胞产生不良影响。静态磁场不但可以回收核壳磁性纳米粒子,而且可以降低污泥体积指数等。
本文对核壳磁性纳米粒子的制备方法进行了总结,对各类方法进行了简要的说明和对比。本文不仅归纳了这类吸附剂对污染物的去除效果及吸附过程,还对这类吸附剂本身所带来的环境风险进行了简要阐述。另外,对静态磁场这种附加设施对活性污泥的影响进行了说明,最后对核壳磁性纳米粒子的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖治国
成岳
唐伟博
余宏伟
关键词:  核壳  磁性  纳米粒子  吸附    
Abstract: Core-shell magnetic nanoparticles, a class of magnetic nanoparticles with core-shell structure. Its core-shell structure makes it easy to be functionalized to meet the requirements of different occasions. In terms of size, nanoparticles have a high specific surface area. They are easy to be recycled and reused by permanent magnets because of their magnetic properties. They are currently widely used in biological research, health care and catalysis. In the study of environmental remediation, the nanophase material meets the requirements of adsorbents and will be one of the ideal materials for future waste water treatment.
There are various methods for preparing core-shell magnetic nanoparticles, and a suitable preparation method is more conducive to the purpose of efficiently removing contaminants. The preparation order of the core and the shell needs different experimental conditions. Besides, the preparation method of the core is different from the shell. And the combination of different preparation methods also has different effects on the size of the core and the shell. The ability of core-shell magnetic nanoparticles to adsorb pollutants, the potential risks inherent in the environment and the environmental impact of additional facilities are compelling.
At present, the preparation methods of core-shell magnetic nanoparticles have been mainly from core to shell. The preparation of magnetic core has been mainly by chemical coprecipitation method and solvothermal method. The shell layer has been probably prepared by St ber method and sol-gel method. The combination of coprecipitation method and St ber method has gradually become one of the classical methods for preparing Fe3O4@SiO2. Core-shell magnetic nanoparticles can efficiently remove a variety of pollutants, including organic pollutants and heavy metal ions. The adsorption process mostly has conformed to the Langmuir adsorption isotherm model and the pseudo second-order kinetic model. A small number of core-shell magnetic nanoparticles have been less harmful to the ecological environment, and excessive core-shell magnetic nanoparticles may have adverse effects on biological cells. Static magnetic field can not only recover core-shell magnetic nanoparticles, but also reduce sludge volume index and so on.
This paper attempts to summerize the preparation of core-shell magnetic nanoparticles and gives a brief description and comparation about the various methods. It not only generalizes the removal effects of these adsorbents on the pollutants and the adsorption processes, but also the environmental risks caused by absorbents. In addition, the effects of additional facilities such as static magnetic fields on activated sludge were explained. At the end of the paper, the development direction of core-shell magnetic nanoparticles was prospected.
Key words:  core shell    magnetic    nanoparticles    adsorption
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  X703.5  
  TB34  
基金资助: 国家自然科学基金(51268018)
作者简介:  肖治国,2017年6月毕业于伊犁师范学院,获理学学士学位。现为景德镇陶瓷大学环境工程硕士研究生,在成岳教授的指导下进行研究。目前主要研究领域为环境污染治理材料。
成岳,景德镇陶瓷大学材料科学与工程学院教授、硕士研究生导师。1987年7月本科毕业于江西理工大学,2006年1月在南京理工大学取得环境工程专业博士学位,2013年1月在康涅狄格大学访学。1987年在景德镇陶瓷大学工作至今。主要从事环境材料开发的研究工作,在分子筛、纳米零价铁等吸附剂的制备与研究方面发表论文数十篇。
引用本文:    
肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
XIAO Zhiguo, CHENG Yue, TANG Weibo, YU Hongwei. Research Progress on Core-shell Magnetic Nanoparticles in Environmental Governance. Materials Reports, 2019, 33(13): 2174-2183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040198  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2174
1 Zhao Z G. Adsorption application principle, Chemical Industry Press Chemical and Applied Chemistry Publishing Center, China, 2005 (in Chinese).赵振国. 吸附作用应用原理,化学工业出版社化学与应用化学出版中心, 2005.2 Marzal P, Seco A, Gabaldón C, et al. Journal of Chemical Technology & Biotechnology, 2015, 66(3), 279.3 Xu J, Wang L, Zhu Y. Langmuir, 2012, 28(22), 8418.4 Yang B, Xu E L, Li M. Separation Science & Technology, 2016, 51(6), 909.5 Sun B, Chakraborty A. Energy, 2015, 84, 296.6 García L, Poveda Y A, Khadivi M,et al. Journal of Chemical & Engineering Data, 2017, 62(4), 1550.7 Musso T B, Parolo M E, Pettinari G,et al. Journal of Environmental Management, 2014, 146, 50.8 Rahmani A R, Samadi M T, Noroozi R. World Academy of Science Engineering & Technology, 2011, 74, 80.9 Kumar K Y, Muralidhara H B, Nayaka Y A,et al. Powder Technology, 2013, 246(6), 125.10 Burakov A E, Galunin E V, Burakova I V,et al. Ecotoxicology & Environmental Safety, 2017, 148, 702.11 Zhang B T, Zheng X, Li H F,et al. Analytica Chimica Acta, 2013, 784, 1.12 Gupta V K, Agarwal S, Saleh T A. Water Research, 2011, 45(6), 2207.13 Gopalakrishnan A, Krishnan R, Thangavel S,et al. Journal of Industrial and Engineering Chemistry, 2015, 30, 14.14 Ponder S M, Darab J G, Mallouk T E. Environmental Science & Technology, 2000, 34(12), 2564.15 Chang Y C, Chen D H. Journal of Colloid and Interface Science, 2005, 283(2), 446.16 Huang D J, Chang C F, Jeng H T,et al. Physical Review Letters, 2004, 93(7), 077204.17 Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. The Journal of Physical Chemistry B, 1997, 101(46), 9463.18 Chung J E, Yokoyama M, Aoyagi T, et al. Journal of Controlled Release, 1998, 53(1-3), 119.19 Cao Y W, Banin U. Journal of the American Chemical Society, 2000, 122(40), 9692.20 Zhong C J, Maye M M. Advanced Materials, 2001, 13(19), 1507.21 Caruso F, Susha A S, Giersig M, et al. Advanced Materials, 1999, 11(11), 950.22 Shchukin D G, Kulak A I, Sviridov D V. Photochemical & Photobiological Sciences, 2002, 1(10), 742.23 Deng Y, Qi D, Deng C, et al. Journal of the American Chemical Society, 2008, 130(1), 28.24 Tang Y, Liang S, Wang J, et al. Journal of Environmental Sciences, 2013, 25(4), 830.25 Yin L, Song S, Wang X, et al. Environmental Pollution, 2018, 238, 725.26 Chao X, Lu X, Dai H. Nanoscale Research Letters, 2017, 12(1), 234.27 Huang X, Guo C, Zuo J, et al. Small, 2009, 5(3), 361.28 Hah H J, Kim J S, Jeon B J, et al. ChemInform, 2003, 34(40), 1712.29 Hah H J, Um J I, Han S H, et al. Chemical Communications, 2004, 40(8), 1012.30 Chen D, Li L, Tang F, et al. Advanced Materials, 2010, 21(37), 3804.31 Tan L, Chen D, Liu H, et al. Advanced Materials, 2010, 22(43), 4885.32 He S, Fei Z, Li L, et al. Chinese Journal of Catalysis, 2013, 34(11), 2098.33 Ghosh R, Pradhan L, Devi Y P, et al. Journal of Materials Chemistry, 2011, 21(35), 13388.34 Huang Y, Zhang L, Huan W, et al. Glass Physics & Chemistry, 2010, 36(3), 325.35 Zhou Z H, Wang J, Liu X, et al. Journal of Materials Chemistry, 2001, 11(6), 1704.36 Tang Z X. Praparation, modification and application of new magnetic nanomaterials, Machinery Industry Press, 2016 (in Chinese).唐祝兴. 新型磁性纳米材料的制备、修饰及应用, 机械工业出版社, 2016.37 Yang N R, Yu G Y. Silicate Bulletin, 1993(2), 56 (in Chinese).杨南如, 余桂郁. 硅酸盐通报, 1993(2), 56.38 Zhu M Y, Chen Q, Tong W J, et al. Chemical Progress, 2017, 29(11), 1366 (in Chinese).朱脉勇, 陈齐, 童文杰, 等. 化学进展, 2017, 29(11), 1366.39 St ber W, Fink A, Ernst Bohn. Journal of Colloid & Interface Science, 1968, 26(1), 62.40 Paramarta V, Taufik A, Saleh R. IOP Conference series: Materials science and engineering, IOP Publishing, 2017.41 Xuan S, Wang Y X J, Leung K C F, et al. The Journal of Physical Chemistry C, 2008, 112(48), 18804.42 Ashrafi A, Rahbarkelishami A, Shayesteh H. Journal of Molecular Structure, 2017, 1147, 40.43 Tajyani S, Babaei A. Journal of Electroanalytical Chemistry, 2018, 808, 50.44 Cao C, Xiao L, Chen C, et al. Powder Technology, 2014, 260(7), 90.45 Xue Juanqin, Xu Shangyuan, Zhu Qianwen, et al. Chinese Journal of Inorganic Chemistry, 2016, 32(9), 1503 (in Chinese).薛娟琴, 徐尚元, 朱倩文, 等. 无机化学学报, 2016, 32(9), 1503.46 Pan P, Lin Y, Gan Z, et al. Journal of Applied Physics, 2018, 123(11), 115.47 Cheng Yue, Xiao Zhiguo, Yu Hongwei, et al. Journal of Functional Materials, 2017, 48(12), 12135 (in Chinese).成岳, 肖治国, 余宏伟, 等. 功能材料, 2017, 48(12), 12135.48 Tang Yanchao, Cheng Yue, Fu Mingliang.Environmental Engineering, 2008(5), 72 (in Chinese).唐燕超, 成岳, 付明亮. 环境工程, 2008(5), 72.49 Peng Qiaoling, Cheng Yue, Hu Xing. China Ceramics, 2014, 50(11), 25 (in Chinese).彭巧玲, 成岳, 胡星. 中国陶瓷, 2014, 50(11), 25.50 Cheng Y, Fan W, Guo L. Separation & Purification Technology, 2014, 130, 167.51 Guo Lei, Cheng Yue, Lu Mang, et al. Industrial Safety and Environmental Protection, 2013, 39(8), 3 (in Chinese).郭磊, 成岳, 鲁莽, 等. 工业安全与环保, 2013, 39(8), 3.52 Yan X, Gan K, Tian B, et al. Research on Chemical Intermediates, 2018, 44(1), 1.53 Salem A N M, Ahmed M A, El-Shahat M F. Journal of Molecular Liquids, 2016, 219, 780.54 Liu J, Zhao Z, Shao P, et al. Chemical Engineering Journal, 2015, 262, 854.55 Yang Q, Song H, Li Y, et al. Journal of Molecular Liquids, 2017, 234, 18.56 Chang J, Ma J, Ma Q, et al. Applied Clay Science, 2016, 119, 132.57 Zhu H, Jiang R, Li J, et al. Separation and Purification Technology, 2017, 179, 184.58 Zhang Z, Kong J. Journal of Hazardous Materials, 2011, 193, 325.59 Magdy A, Fouad Y O, Abdel-Aziz M H, et al. Journal of Industrial and Engineering Chemistry, 2017, 56, 299.60 Yang X, Zhou T, Ren B, et al. Journal of Analytical Methods in Chemistry, 2017, 2017, 1.61 Zhou L, Zhang G, Tian J, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(11), 11042.62 Jamali H A, Hosseini C, Siboni M S, et al. Oriental Journal of Chemistry, 2017, 33(4), 1744.63 Mohagheghian A, Vahidikolur R, Pourmohseni M, et al. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2017, 75(10), 2369.64 Feng C, Aldrich C, Eksteen J J, et al. Minerals Engineering, 2017, 110, 40.65 Tran H V, Bui L T, Dinh T T, et al. Materials Research Express, 2017, 4(3), 035701.66 Harno F F, Taufik A, Saleh R. International symposium on current progress in mathematics and science, AIP Publishing LLC, 2017.67 Fisli A, Ridwan R, Krisnandi Y K, et al. International Journal of Technology, 2017, 8(1), 76.68 Zhou Q, Wang Y, Xiao J, et al. Scientific Reports,2017,7(1), 11316.69 Yu B, Yang B, Li G, et al. Journal of Materials Science, 2018, 53(9), 6471.70 ifti T D. Cogent Chemistry, 2017, 3(1), 1284296.71 Li Y, Qiu J, Ye S, et al. New Journal of Chemistry, 2017, 41(23), 14137.72 Wan X, Zhan Y, Long Z, et al. Chemical Engineering Journal, 2017, 330, 491.73 Ding J, Liu L, Xue J, et al. Journal of Alloys and Compounds, 2016, 688, 649.74 Wang W, Zhang H, Zhang L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 100.75 Shi H, Yang J, Zhu L, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(2), 1871.76 Mirzayi B, Nematollahzadeh A, Seraj S. Powder Technology, 2015, 270, 185.77 Sohrabnezhad S, Rezaeimanesh M. Advanced Powder Technology, 2017, 28(11), 3039.78 Bayal N, Jeevanandam P. Journal of Nanoparticle Research, 2013, 15(11), 2066.79 Farhadi S, Siadatnasab F, Khataee A. Ultrasonics Sonochemistry, 2017, 37, 298.80 Gan L, Xu L, Qian K. Materials & Design, 2016, 109, 354.81 Madhubala V, Kalaivani T. Applied Surface Science, 2018, 449, 584.82 Zhan S, Yang Y, Shen Z, et al. Journal of Hazardous Materials, 2014, 274, 115.83 Lalwani G, D agati M, Khan A M, et al. Advanced Drug Delivery Reviews, 2016, 105, 109.84 Begum P, Ikhtiari R, Fugetsu B. Carbon, 2011, 49(12), 3907.85 Khodakovskaya M V, de Silva K, Nedosekin D A, et al. Proceedings of the National Academy of Sciences, 2011, 108(3), 1028.86 Mullick Chowdhury S, Dasgupta S, McElroy A E, et al. Journal of Applied Toxicology, 2014, 34(11), 1235.87 Ahmed F, Rodrigues D F. Journal of Hazardous Materials, 2013, 256, 33.88 Xing W L, Lalwani G, Rusakova I, et al. Particle & Particle Systems Characterization, 2014, 31(7), 745.89 Lalwani G, Xing W, Sitharaman B. Journal of Materials Chemistry B Materials for Biology & Medicine, 2014, 2(37), 6354.90 Navarro E, Piccapietra F, Wagner B, et al. Environmental Science & Technology, 2008, 42(23), 8959.91 Gubbins E J, Batty L C, Lead J R. Environmental Pollution, 2011, 159(6), 1551.92 Yin L, Cheng Y, Espinasse B, et al. Environmental Science & Technology, 2011, 45(6), 2360.93 Navarro E, Baun A, Behra R, et al. Ecotoxicology, 2008, 17(5), 372.94 Asharani P V, Wu Y L, Gong Z, et al. Nanotechnology, 2008, 19(25), 255102.95 Roh J, Sim S J, Yi J, et al. Environmental Science & Technology, 2009, 43(10), 3933.96 Meyer J N, Lord C A, Yang X Y, et al. Aquatic Toxicology, 2010, 100(2), 140.97 Sondi I, Salopek-Sondi B. Journal of Colloid and Interface Science, 2004, 275(1), 177.98 Dror-Ehre A, Mamane H, Belenkova T, et al. Journal of Colloid and Interface Science, 2009, 339(2), 521.99 Lu W, Senapati D, Wang S, et al. Chemical Physics Letters, 2010, 487(1-3), 92.100 AshaRani P V, Low Kah Mun G, Hande M P, et al. ACS Nano, 2008, 3(2), 279.101 Levard C, Hotze E M, Lowry G V, et al. Environmental Science & Technology, 2012, 46(13), 6900.102 Amil U M, Khan I, Bhat H A, et al. Current Organic Synthesis, 2017, 14(2), 206.103 Zieliński M, Cydzik-Kwiatkowska A, Zielińska M, et al. Water, Air, & Soil Pollution, 2017, 228(4), 126.104 Krzemieniewski M, Debowski M, Janczukowicz W, et al. Polish Journal of Environmental Studies, 2004, 13(1), 45.105 Rusanowska P, Zieliński M, D bowski M. Inz·ynieria Ekologiczna, 2017, 18(2), 130.106 Zieliński M, Cydzik-Kwiatkowska A, Zielińska M, et al. Water, Air, & Soil Pollution, 2017, 228(4), 126.107 Yadollahpour A, Rashidi S, Ghotbeddin Z, et al. Journal of Pure and Applied Microbiology, 2014, 8(5), 3711.108 Zieliński M, Rusanowska P, D bowski M, et al. Science of the Total Environment, 2018, 625, 738.109 Guan S, Deng F, Huang S, et al. Ultrasonics Sonochemistry, 2017, 38, 9.110 Hong C, Hai B L, Yun F X. Enzyme and Microbial Technology, 2010, 46(7), 594.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[4] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[5] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[9] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[10] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[11] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[12] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[13] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[14] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[15] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed