Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4314-4318    https://doi.org/10.11896/j.issn.1005-023X.2018.24.019
  金属与金属基复合材料 |
长效超疏水铜表面的构建及耐磨性和自清洁性能
王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花
兰州交通大学材料科学与工程学院, 兰州 730070
Construction of Long-acting Superhydrophobic Copper Surface and Its Wear Resistance and Self-cleaning Performance
WANG Jing, SHI Xueting, FENG Libang, QIANG Xiaohu, LIU Yanhua
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070
下载:  全 文 ( PDF ) ( 1847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 改善超疏水表面的普适性、稳定性和耐磨性是超疏水材料实用化的前提。本研究通过水热反应和表面修饰成功制得接触角达156.2°、滚动角为3~4°的铜基超疏水表面。利用接触角测量、扫描电镜观察、XRD测试、红外光谱和EDS分析对超疏水铜表面的润湿性能、表面微结构、相结构和化学结构进行了分析表征。结果表明:所制备的超疏水表面是由大量Cu2S晶粒堆积形成的微纳米二元结构及接枝的疏水长链构成,二者共同赋予铜基超疏水表面广泛的普适性和良好的稳定性。同时,该超疏水表面具有良好的耐磨性和优异的自清洁性能。本工作对此项性能产生的原因和机理进行了分析探讨,以期为超疏水材料在实际生产和生活中的应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晶
史雪婷
冯利邦
强小虎
刘艳花
关键词:    超疏水  耐磨性  稳定性  自清洁    
Abstract: It is a prerequisite that improving the universality, stability, and wear resistance of superhydrophobic materials for the practical applications. In this study, copper-based superhydrophobic surface with a contact angle of 156.2° and a rolling angle of 3—4° was prepared successfully by hydrothermal reaction and surface modification. The wettability, surface microstructure, phase structure, and chemical structure of superhydrophobic copper surface were characterized by contact angle measurement, SEM observation, XRD test, FT-IR and EDS analyses. Results showed that the as-prepared superhydrophobic surface was composed of a large number of Cu2S crystals grafted with long hydrophobic chains, and which lead to the surface presents micro- and nano-scaled binary structure. Consequently, the copper-based superhydrophobic surface was endowed with a wide range of universality and good stability. Meanwhile, the superhydrophobic surface exhibited good wear resistance and excellent self-cleaning performance. These provide a foundation for the practical application of superhydrophobic materials.
Key words:  copper    superhydrophobic    wear resistance    stability    self-cleaning
                    发布日期:  2019-01-23
ZTFLH:  TB303  
基金资助: 国家自然科学基金(21161012)
通讯作者:  冯利邦:通信作者,男, 1971年生, 博士, 教授, 主要从事功能界面材料和高分子材料的研究工作 E-mail:fenglb@mail.lzjtu.cn   
作者简介:  王晶:女,1992年生, 主要从事功能纳米界面材料的研究工作 E-mail:1228939325@qq.com
引用本文:    
王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
WANG Jing, SHI Xueting, FENG Libang, QIANG Xiaohu, LIU Yanhua. Construction of Long-acting Superhydrophobic Copper Surface and Its Wear Resistance and Self-cleaning Performance. Materials Reports, 2018, 32(24): 4314-4318.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.019  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4314
1 Ding S, Xiang T, Li C, et al. Fabrication of self-cleaning superhydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel[J].Materials & Design,2017,117:280.
2 Gao Yingli, Dai Kaiming, Huang Liang, et al.Research and application of superhydrophobic and anti-icing technology in highway pavement[J].Materials Review A:Review Papers,2017,31(1):103(in Chinese).
高英力,代凯明,黄亮,等.超疏水-防覆冰技术在公路路面中的研究应用进展[J].材料导报:综述篇,2017,31(1):103.
3 Feng L, Zhao L, Qiang X, et al. Fabrication of superhydrophobic copper surface with excellent corrosion resistance[J].Applied Phy-sics A,2015,119(1):75.
4 Zhu Yali,Fan Weibo,Feng Libang,et al.Anti-adhesion and corrosion resistance of superhydrophobic magnesium alloy surface[J].Journal of Materials Engineering,2016,44(1):66(in Chinese).
朱亚利,范伟博,冯利邦,等.超疏水镁合金表面的防黏附和耐腐蚀性能[J].材料工程,2016,44(1):66.
5 Liu Y, Li X, Jin J, et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J].Applied Surface Science,2016,400:498.
6 Liu J, Wang L, Wang N, et al. A robust Cu(OH)2 nano-needles mesh with tunable wettability for nonaqueous multiphase liquid se-paration[J].Small,2016,13(4):1.
7 Xie Qingwei, Quan Xuejun, Li Ruiheng, et al. Review on preparation of superhydrophobic metal mesh and its application in oil-water separation[J].Journal of Chongqing Institute of Technology (Natural Science), 2017,31(6):99(in Chinese).
谢清伟,全学军,李瑞恒,等.超疏水金属网膜的制备及油水分离应用进展[J].重庆理工大学学报(自然科学),2017,31(6):99.
8 Liu C J, Feng X Y, Li N, et al. Superhydrophobic Co3O4-loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification[J].Surface & Coatings Technology,2016,309:1111.
9 Su X, Li H, Lai X, et al. Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: Fabrication, reversibly extreme wettability and oil-water separation[J].ACS Applied Materials & Interfaces,2017,9(3):3131.
10 Lai D, Kong G, Che C. Synthesis and corrosion behavior of ZnO/SiO2, nanorod-sub microtube superhydrophobic coating on zinc substrate[J].Surface & Coatings Technology,2017,315:509.
11 Tam J, Palumbo G, Erb U. Recent advances in superhydrophobic electrodeposits[J].Materials,2016,9(3):151.
12 Wang Huaiyuan, Wang Enqun, Meng Yang,et al.Preparation and properties of superamphiphobic wear-resistance PPS-based coating[J].Journal of Materials Engineering,2017,45(1):38(in Chinese).
汪怀远,王恩群,孟旸,等.超双疏耐磨PPS基涂层的制备与性能[J].材料工程,2017,45(1):38.
13 Wang Zhongqian,Wan Yong, Yang Shuyan,et al.Fabrication and tribological performance of hydrophobic films on the copper substrate[J].Tribology,2012,32(1):53(in Chinese).
王中乾,万勇,杨淑燕,等.铜表面高疏水薄膜的制备及摩擦学性能的研究[J].摩擦学学报,2012,32(1):53.
14 Xiao F, Yuan S, Liang B, et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion[J].Journal of Materials Chemistry A,2015,3(8):4374.
15 Zhi J H, Zhang L Z, Yan Y, et al. Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies[J].Applied Surface Science,2016,392:286.
16 Milionis A, Loth E, Bayer I S. Recent advances in the mechanical durability of superhydrophobic materials[J].Advances in Colloid & Interface Science,2016,392:286.
17 Cassie A,Baxter S. Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40(1):546.
18 Chen Jufang, Ma Xiaoguo, Dang Yongfeng,et al.Microwave-assisted synthesis and characterization of 1,3-di(n-butyl)imidazolium hexafluorophosphate ionic liquid[J].Journal of Functional Materials,2011,42(S1):34(in Chinese).
陈菊芳,马晓国,党永锋,等.1,3-二正丁基咪唑六氟磷酸盐离子液体的微波辅助合成与结构表征[J].功能材料,2011,42(S1):34.
19 Hu J M, Liu L, Zhang J Q, et al. Electrodeposition of silane films on aluminum alloys for corrosion protection[J].Progress in Organic Coatings,2007,58(4):265.
20 Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J].Planta,1997,202(1):1.
21 Feng L, Zhu Y, Wang J, et al. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance[J].Applied Surface Science,2017,422:566.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[5] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[6] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[7] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[8] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[9] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[10] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[11] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[12] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[13] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[14] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[15] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed