Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17089-17098    https://doi.org/10.11896/cldb.19110003
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
MFI型分子筛在VOCs去除领域的研究进展
冯勇超1, 于庆君1,2, 易红宏1,2, 唐晓龙1,2, 黄永海1, 张媛媛1, 庄瑞杰1
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Research Progress of MFI-type Zeolites in the Field of VOCs Removal
FENG Yongchao1, YU Qingjun1,2, YI Honghong1,2, TANG Xiaolong1,2, HUANG Yonghai1, ZHANG Yuanyuan1, ZHUANG Ruijie1
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 挥发性有机物(VOCs)的排放对自然环境和人类健康造成了严重危害,开展VOCs治理研究工作刻不容缓。常见的VOCs治理方法主要有吸附法、生物法、吸收法、冷凝法和催化燃烧法等。针对工业生产中VOCs浓度低、风量大、温度低等特点,吸附+催化处理工艺近年来受到广泛关注。
   吸附净化技术的核心是吸附剂。目前,常见的吸附材料主要有活性炭、硅胶、分子筛等,由于工业VOCs中含水的特点以及材料本身的性质,MFI型分子筛凭借其独特的孔道结构和可调的硅铝比等优势在VOCs去除领域应用较为广泛。MFI型分子筛按其元素组成可分为ZSM-5、Silicalite-1和TS-1。吸附剂的孔道结构和表面性质决定其对VOCs的吸附效果。在工业净化过程中,VOCs含水问题极大地减弱了分子筛的吸附性能。因此,近年来除研究提高分子筛对VOCs的饱和吸附量外,研究者们还对工业VOCs中含水问题进行了深入的研究,目前常见的疏水改性方法主要有提高分子筛的硅铝比和表面硅烷化两种改性方式。
   MFI型分子筛作为催化剂载体,其活性组分和载体共同决定了负载型催化剂对VOCs的去除情况。复合活性组分、载体结构以及优异的催化剂制备方法均能够提高其催化氧化VOCs的性能。
   本文归纳了近年来MFI型分子筛在VOCs去除领域的主要研究成果和进展,分别对MFI型分子筛的结构性质及其在吸附和催化氧化VOCs方面的应用进行了介绍,分析了其在吸附和催化领域中面临的问题,最后针对工业源VOCs的排放特征,对MFI型分子筛的应用前景进行了分析与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯勇超
于庆君
易红宏
唐晓龙
黄永海
张媛媛
庄瑞杰
关键词:  MFI型分子筛  挥发性有机物  吸附  催化氧化    
Abstract: Volatile organic compounds (VOCs) do great harm to both the environment and human health and therefore it is urgent to develop new technologies for VOCs removal. Commonly, the treatment methods of VOCs include adsorption, biological, absorption, condensation and catalytic combustion, etc. In recent years, the treatment route of combining both adsorption and catalytic combustion was proposed, aiming at the treatment of VOCs with low concentration, large air volume and low temperature produced in industrial production.
Adsorbent is the key for the adsorption technology. The common adsorption materials contain activated carbon, silica gel, molecular sieves, etc. Among them, zeolites with MFI topology have been widely used in the field of VOCs removal due to the special pore structure and adjustable Si/Al ratio. MFI zeolite mainly includes ZSM-5, Silicalite-1 and TS-1 according to the different compositions. As an adsorbent, the adsorption results of different VOCs have been influenced by its pore structure and surface properties. In the industrial purification process, the water in VOCs greatly reduces the adsorption capacity of zeolites. Therefore, in recent years, except for studying to improve the saturated adsorption capacity of zeolites for VOCs, the researchers paid more and more attention to improving the adsorption capacity of adsorbents under humid atmosphere. Generally, methods of increasing the silicon-alumina ratio and by surface silanization modification are applied to increase the adsorption perfor-mance of MFI-type zeolites in humid conditions.
MFI-type zeolites can also be used as catalyst supports. For the supported catalyst, both the active components and supports properties determine the VOCs removal efficiency of catalysts. The VOCs catalytic oxidation performance of catalysts can be effectively improved by choosing appropriate composite active components, suitable support structures as well as superior catalyst preparation methods.
In this paper, the main research results and progress of MFI-type zeolites applied in the field of VOCs removal were summarized. In detail, the structure, properties of MFI-type zeolites as well as their application in VOCs removal via adsorption or catalytic oxidation technology were illustrated. Based on these, the application prospect of MFI-type zeolites is analyzed and prospected, according to the emission characteristics of industrial VOCs sources.
Key words:  MFI-type zeolites    volatile organic compound    adsorption    catalytic oxidation
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  X511  
基金资助: 北京市科技计划项目(首都蓝天行动培育专项)(Z181100005418008);中央高校基本科研业务费专项资金(FRF-TP-18-011A3);国家自然科学基金(21876010);中央引导地方科技发展专项(19943816G)
通讯作者:  yhhtxl@163.com   
作者简介:  冯勇超,2018年6月毕业于河北科技大学,获得工学学士学位,现为北京科技大学能源与环境工程学院硕士研究生,在易红宏教授的指导下进行研究。目前主要研究领域为MFI型分子筛吸附/催化去除VOCs。
易红宏,北京科技大学能源与环境工程学院教授,博士研究生导师。主要从事气态污染物协同净化和典型VOCs净化技术研究。入选教育部新世纪优秀人才、云南省中青年学术和技术带头人后备人才。获云南省技术发明一等奖、中国有色金属工业科学技术二等奖、中国环境科学学会青年科技奖等。先后主持国家自然科学基金、国家863计划重点项目子课题、北京市科技计划项目、河北省科技支撑计划重点项目10余项。发表SCI论文170余篇;出版论著6部;兼任中国有色金属学会技术专家工作委员会委员,《环境工程》期刊编委等。
引用本文:    
冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
FENG Yongchao, YU Qingjun, YI Honghong, TANG Xiaolong, HUANG Yonghai, ZHANG Yuanyuan, ZHUANG Ruijie. Research Progress of MFI-type Zeolites in the Field of VOCs Removal. Materials Reports, 2020, 34(17): 17089-17098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110003  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17089
1 Potter P M, Al-Abed S R, Lay D, et al.Environmental Science & Technology, 2019,53(8),4364.
2 Knudsen H N, Kjaer U D, Nielsen P A, et al.Atmospheric Environment, 1999,33(8),1217.
3 Yi H H, Huang Y H, Tang X L, et al.Atmospheric Environment, 2019,200,208.
4 Huang R J, Zhang Y L, Bozzetti C, et al.Nature, 2014,514(7521),218.
5 Yi H H, Huang Y H, Tang X L, et al.Ultrasonics Sonochemistry, 2019,53,126.
6 Xu W C, Lin K C, Ye D Q, et al.Nanomaterials, 2019,9(2),290.
7 Radwan E K, Langford C H, Achari G. Royal Society Open Science, 2018,5(9),180918.
8 Guieysse B, Hort C, Platel V, et al.Biotechnology Advances, 2008,26(5),398.
9 Xu R R, Pang W Q, Yu J H, et al. Molecular sieve and porous material chemistry, Science Press, China,2004(in Chinese).
徐如人, 庞文琴, 于吉红, 等.分子筛与多孔材料化学, 科学出版社, 2004.
10 Zaitan H, Manero M H, Valdés H.Journal of Environmental Sciences, 2016,41,59.
11 Sui H, Liu H X, An P, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017,74,218.
12 Zhang W W. Study on the adsorption-catalytic performance of toluene on SBA-15. Master's Thesis, Dalian University of Technology, China, 2011(in Chinese).
张薇薇. 甲苯在SBA-15上吸附-催化性能的研究. 硕士学位论文, 大连理工大学, 2011.
13 Zhou Y F. Study on the adsorption properties of VOCs and their industrial application. Master's Thesis, Zhejiang University, China, 2019 (in Chinese).
周燕芳. 分子筛VOCs吸附性能及其工业化应用研究. 硕士学位论文, 浙江大学, 2019.
14 Wang Y D. Removal of indoor air pollutants benzene and formaldehyde by “storage-oxidation” cycle. Master's Thesis, Dalian University of Techno-logy, China, 2016 (in Chinese).
王宜迪. 室内空气污染物苯和甲醛的“存储—氧化”循环脱除研究. 硕士学位论文, 大连理工大学, 2016.
15 Huang H, Zhang C H, Wang L, et al.Catalysis Science & Technology, 2016,6(12),4260.
16 He C, Li P, Cheng J, et al. Applied Catalysis A: General, 2010,382(2),167.
17 Xia Q H, Hidajat K, Kawi S.Catalysis Today, 2001,68(1),255.
18 Chen C Y, Chen F, Zhang L, et al.Chemical Communications, 2015,51(27),5936.
19 Yi H H, Huang Y H, Tang X L, et al. Industrial & Engineering Chemistry Research, 2018,57(12),4186.
20 Serrano D P, Calleja G, Botas J A, et al.Separation and Purification Technology, 2007,54(1),1.
21 Yuan S Y. Preparation and desulfurization performance of metal doped ZSM-5 molecular sieves. Master's Thesis, Henan University, China, 2018 (in Chinese).
袁世阳. 金属掺杂ZSM-5分子筛制备及脱硫性能研究. 硕士学位论文, 河南大学, 2018.
22 Wang W Z, Wang H L, Zhu T L, et al.Journal of Hazardous Materials, 2015,292,70.
23 Wang Y, Yang D Y, Li S Z, et al.Microporous and Mesoporous Materials, 2018,258,17.
24 Meng X H, Lin C H, Zhang Y H, et al. Frontiers in Chemistry, 2019,7,502.
25 Jiang K H. Preparation of multistage porous molecular sieve adsorbent and its adsorption desulfurization performance of low sulfur Gasoline. Master's Thesis. University of the inner mongol, China, 2019 (in Chinese).
蒋坤洪. 多级孔分子筛吸附剂的制备及其低硫汽油吸附脱硫性能的研究. 硕士学位论文,内蒙古大学, 2019.
26 Li C H. Research on adsorption properties of molecular sieve adsorbents for formaldehyde molecule. Master's Thesis, Dalian University of Techno-logy, China, 2005 (in Chinese).
李翠红, 分子筛吸附剂对甲醛分子吸附性能的研究. 硕士学位论文, 大连理工大学, 2005.
27 Song W, Justice R E, Jones C A, et al.Langmuir, 2004,20(19),8301.
28 Wang Y. Study on catalytic oxidation of formaldehyde and removal of formaldehyde and benzene by "storage-oxidation" cycle. Ph.D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).
王钰. 甲醛的催化氧化与“存储-氧化”循环脱除甲醛和苯的研究. 博士学位论文, 大连理工大学, 2014.
29 Kraus M, Trommler U, Holzer F, et al.Chemical Engineering Journal, 2018,351,356.
30 Bal'Zhinimaev B S, Paukshtis E A, Toktarev A V, et al.Microporous and Mesoporous Materials, 2019,277,70.
31 Chintawar P S, Greene H L.Applied Catalysis B, Environmental, 1997,14(1),37.
32 Huang H F, Rong W J, Gu Y Y, et al.Journal of Environmental Science,2014,34(12),3144 (in Chinese).
黄海凤, 戎文娟, 顾勇义, 等. 环境科学学报, 2014, 34(12),3144.
33 Eslava S, Delahaye S, Baklanov M R, et al.Langmuir, 2008,24(9),4894.
34 Han X L, Wang L, Li J D, et al.Applied Surface Science, 2011,257(22),9525.
35 Li C L, Liu C L, Yang H J, et al.Chemical Research and Application,2013,25(2),236.(in Chinese).
李承龙, 刘才林, 杨海君, 等. 化学研究与应用, 2013, 25(2),236.
36 Li W B, Wang J X, Gong H.Catalysis Today, 2009,148(1-2),81.
37 Wang Y, Yao S Y, Crocker M, et al.Catalysis Science & Technology, 2015,5(11),4968.
38 Ren Y J, Tang Y, Zhang L L, et al.Nature Communications, 2019,10(1).
39 de Rivas B, Sampedro C, López-Fonseca R, et al.Applied Catalysis A: General, 2012,417-418,93.
40 Su J, Yao W Y, Liu Y, et al.Applied Surface Science, 2017,396,1026.
41 Yang P, Xue X M, Meng Z H, et al.Chemical Engineering Journal, 2013,234,203.
42 Li S M, Hao Q L, Zhao R Z, et al.Chemical Engineering Journal, 2016,285,536.
43 Ding J J, Rui Z B, Lyu P T, et al.Applied Surface Science, 2018,457,670.
44 Yue L, He C, Zhang X Y, et al.Journal of Hazardous Materials, 2013,244-245,613.
45 Huang W Z, Liu Y, Wu Z B.Catalysis Communications, 2019,122,58.
46 Romero-Sáez M, Divakar D, Aranzabal A, et al.Applied Catalysis B: Environmental, 2016,180,210.
47 Zhou Y, Zhang H P, Yan Y.Journal of the Taiwan Institute of Chemical Engineers, 2018,84,162.
48 Zhang Y, Zhang H P, Yan Y.Microporous and Mesoporous Materials, 2018,261,244.
49 Cao X X, Zhou R, Rui N, et al.Catalysis Today, 2017,297,219.
50 Zhang C H, Huang H, Li G Q, et al.Catalysis Today, 2019,327,374.
51 He C, Shen Q, Liu M X.Journal of Porous Materials, 2014,21(5),551.
52 Chen H X, Zhang R D, Bao W J, et al.Catalysis Today, DOI:10.1016/J.CATTOD.2019.06.053.
53 Setiawan A, Friggieri J, Hosseiniamoli H, et al.Physical Chemistry Che-mical Physics, 2016,18(15),10528.
54 Ding J J, Chen J S, Rui Z B, et al.Catalysis Today, 2018,316,107.
55 Chen C Y, Wang X, Zhang J, et al.Catalysis Today, 2015,258,190.
56 Dai Q G, Wang W, Wang X Y, et al.Applied Catalysis B: Environmental, 2017,203,31.
57 Liu G Z, Tian Y J, Zhang B F, et al.Journal of Hazardous Materials, 2019,367,568.
58 Yan Y, Wang L, Zhang H P.Chemical Engineering Journal, 2014,255,195.
59 Chen H B, Zhang H P, Yan Y.Chemical Engineering Journal, 2014,254,133.
60 Chen H B, Zhang H P, Yan Y.Chemical Engineering Science, 2014,111,313.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[5] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[6] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[7] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[8] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[9] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[10] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[11] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[12] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[15] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed