Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16058-16064    https://doi.org/10.11896/cldb.19120068
  无机非金属及其复合材料 |
玄武岩织物增强碱激发矿渣粉煤灰水泥砂浆的耐久性研究
彭卓, 朱德举, 史才军, 郭帅成, 李宁
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Durability Analysis of Basalt Textile Reinforced Alkali-activated Slag-fly Ash Cement Mortars
PENG Zhuo, ZHU Deju, SHI Caijun, GUO Shuaicheng, LI Ning
Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 6124KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 玄武岩织物可以增强碱激发胶凝材料的力学性能和体积稳定性,但目前关于其长期性能和耐久性的研究相对较少。基于加速老化试验、三点弯曲试验以及扫描电镜(SEM)比较了有无环氧涂层的玄武岩织物在碱激发矿渣粉煤灰水泥砂浆试件中的耐久性,并与硅酸盐水泥砂浆试件的测试结果进行了对比。结果表明:相较于硅酸盐水泥砂浆试件,织物增强碱激发水泥砂浆试件经加速老化后性能劣化更为显著,老化24 d后碱激发水泥砂浆试件和硅酸盐水泥砂浆试件的强度保留率分别为68.94%和81.69%。环氧涂层能提高试件的弯曲强度,并且延缓老化初期弯曲强度的下降速率,但延缓效果随龄期延长逐渐削弱,至18 d已基本失效。相对于抗弯强度,老化腐蚀对极限弯曲应变的降低作用更为明显。硅酸盐水泥砂浆基体中的玄武岩纤维多为局部点蚀,而碱激发水泥砂浆基体中的玄武岩纤维多呈整体麻面。环氧涂层能有效延缓玄武岩织物在碱激发胶凝材料中的性能劣化,但在加速老化过程中会逐渐降解导致失效,因此需要研究更为有效的表面处理方式以提升其耐久性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭卓
朱德举
史才军
郭帅成
李宁
关键词:  玄武岩织物增强  碱激发  弯曲性能  耐久性  表面涂层    
Abstract: Reinforcement with the basalt textile can improve both the mechanical performance and volume stability of the alkali-activated cementitious materials. But the current understanding of its durability and long-term performance is still limited. In order to resolve this issue, accelerated aging experiment, flexural test and microscale characterization with scanning electron microscopy (SEM) were conducted for the basalt textile reinforced alkali-activated slag-fly ash cement mortar and Portland cement mortar specimens with and without epoxy coating. The experimental results indicate that compared with that of Portland cement mortar specimens, the flexural strength of the textile reinforced alkali-activated cement mortar specimens decreased more obviously with accelerated aging. After exposure for 24 d, the strength retention rate of alkali-activated cement mortar specimens and Portland cement mortar specimens are 68.94% and 81.69% respectively. The epoxy coating can improve the flexural strength and mitigate the alkaline deterioration on the flexural strength in the early stage of aging. But the effect of the epoxy coating gradually weakens with the increase of the age, and roughly fails at 18 d. Specifically, the reduction degree on the ultimate flexural strain is more obvious compared to that of the flexural strength. The basalt fibers embedded in the Portland cement mortars present local pit corrosion, while the wholescale pit corrosion can be found on the surface of those embedded in the alkali-activated cement mortars. These results support that the epoxy coating can effectively protect textiles from the alkali solution in matrix, but it degrades gradually during the accelerated aging process. Hence, the development of new surface treatment methods is needed to achieve more durable and effective surface protection for the basalt fiber in alkaline solution.
Key words:  basalt textile reinforcement    alkali-activated    flexural property    durability performance    surface coating
发布日期:  2021-09-07
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51778220;U1806225;51638008);湖湘高层次人才聚集工程-创新人才(2018RS3057);长沙市科学计划项目 (kq1907115)
通讯作者:  dzhu@hnu.edu.cn   
作者简介:  彭卓,湖南大学土木工程学院硕士研究生,在史才军教授、朱德举教授的指导下进行研究。目前主要研究领域为织物增强水泥基复合材料。
朱德举,湖南大学教授,博士研究生导师。在高性能织物增强水泥基复合材料、纤维增强树脂基复合材料(复材)和海水海砂混凝土及海洋环境中的复材筋增强混凝土结构、生物材料和仿生材料的多尺度力学行为及仿生设计与制备等交叉领域进行了深入系统的研究。近5年来,主持国家级和省部级科研项目10项。发表SCI/EI文章84篇,英文著作章节2篇。曾获日本混凝土学会期刊Journal of Advanced Concrete Technology最佳论文奖。国际学术期刊Journal of Sustainable Cement-Based Materials编委,中国复合材料学会土木工程复合材料分会委员,Cement and Concrete Composites等二十余个国际权威期刊的审稿人。
引用本文:    
彭卓, 朱德举, 史才军, 郭帅成, 李宁. 玄武岩织物增强碱激发矿渣粉煤灰水泥砂浆的耐久性研究[J]. 材料导报, 2021, 35(16): 16058-16064.
PENG Zhuo, ZHU Deju, SHI Caijun, GUO Shuaicheng, LI Ning. Durability Analysis of Basalt Textile Reinforced Alkali-activated Slag-fly Ash Cement Mortars. Materials Reports, 2021, 35(16): 16058-16064.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120068  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16058
1 Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes, CRC Press, USA, 2006.
2 Shi C,Stegemann J A.Cement and Concrete Research,2000,30(6),803.
3 Shi C. Cement and Concrete Research,1996, 26(12),1789.
4 Shi C. Advances in Cement Research, 2003, 15(2), 77.
5 Mobasher B. Mechanics of fiber and textile reinforced cement composites, CRC Press, USA, 2011.
6 Peled A, Mobasher B. Journal of Materials in Civil Engineering, 2007, 19(4), 340.
7 Xu S L, Li H. Journal of Building Materials,2006,9(4),481(in Chinese).
徐世烺, 李赫. 建筑材料学报, 2006, 9(4), 481.
8 Banholzer B, Brockmann T, Brameshuber W. Materials and Structures, 2006, 39(8), 749.
9 Xun Y, Zhang Q, Li Y T. China Civil Engineering Journal, 2008, 41(10), 39(in Chinese).
荀勇, 张勤, 李玉寿. 土木工程学报, 2008, 41(10), 39.
10 Brameshuber W, Brockmann T. In: Calcium Aluminate Cements 2001. London, 2001, pp. 659.
11 Orlowsky J, Raupach M, Cuypers H, et al. Materials and Structures, 2005, 38(2), 155.
12 Li T, Zhang Y, Dai J. Construction and Building Materials,2017,152,651.
13 Shaikh F U A, Patel A. Fibers, 2018, 6(1), 2.
14 Chi H L, Louda P, Periyasamy A P, et al. Fibers, 2018, 6, 87.
15 Menna C, Asprone D, Ferone C, et al. Composites Part B: Engineering, 2013, 45(1), 1667.
16 Cao L. Experimental study on RC beams shear strengthened with carbon fiber textile reinforced geopolymer mortar. Master's Thesis, South China University of Technology, China, 2016 (in Chinese).
曹亮. 纤维编织网增强地聚物砂浆抗剪加固钢筋混凝土梁试验研究. 硕士学位论文, 华南理工大学, 2016.
17 Zhao R, Shi C J, Wang X G, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(9), 1794(in Chinese).
赵瑞, 史才军, 王小刚, 等. 硅酸盐通报, 2013, 32(9), 1794.
18 Kim D J, Naaman A E, El-tawil S. Cement and Concrete Composites, 2008, 30(10),917.
19 Pan Y C. Research on performance in fiber textile reinforced concrete sheet. Master's Thesis, Southeast University, China, 2006 (in Chinese).
潘永灿. 纤维织物增强混凝土薄板受力性能研究. 硕士学位论文, 东南大学, 2006.
20 Yang J M, Qian C X, Xun Y, et al. Journal of Building Materials, 2009, 12(5), 590(in Chinese).
杨建明, 钱春香, 荀勇, 等. 建筑材料学报, 2009, 12(5), 590.
21 Cao J H. Study on durability of glass fiber reinforced ordinary Portland cement. Ph.D. Thesis, Chongqing University, China, 2004 (in Chinese).
曹巨辉. 玻璃纤维增强普通硅酸盐水泥耐久性研究. 博士学位论文, 重庆大学, 2004.
22 Du Y B, Xun Y, Liu X Y. Concrete, 2008(9), 53(in Chinese).
杜玉兵, 荀勇, 刘小艳. 混凝土, 2008(9), 53.
23 Cheng C, He J, Zhang J, et al. Construction and Building Materials, 2019, 217, 128.
24 Kong K, Mesticou Z, Michel M, et al. Composite Structures, 2017, 179, 107.
25 Litherland K L, Oakly D R, Proctor B A. Cement and Concrete Research, 1981, 11(3), 455.
26 Rajabipour F, Maraghechi H, Fischer G. Journal of Materials in Civil Engineering, 2010, 22(12), 1201.
27 Rybin V A, Utkin A V, Baklanova N I. Cement and Concrete Research, 2013, 53, 1.
[1] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[2] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[3] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[4] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[5] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[6] 许闯, 张祖华, 陈慕翀, 史才军, 李宁, 刘翼玮. 层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用[J]. 材料导报, 2022, 36(11): 21020078-7.
[7] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[8] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[9] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[10] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[11] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[12] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[13] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[14] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[15] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed