Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20120239-9    https://doi.org/10.11896/cldb.20120239
  无机非金属及其复合材料 |
钢筋高延性混凝土梁裂缝试验研究与计算方法
邓明科1, 王雪松1, 张敏1, 马福栋1, 罗妍2, 孙宏哲1
1 西安建筑科技大学土木工程学院,西安 710055
2 成都市建筑设计研究院,成都 610000
Experimental Research and Calculation Method of Cracks in Reinforced High Ductility Concrete Beams
DENG Mingke1, WANG Xuesong1, ZHANG Min1, MA Fudong1, LUO Yan2, SUN Hongzhe1
1 School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
2 Chengdu Architectural Design and Research Institute, Chengdu 610000, China
下载:  全 文 ( PDF ) ( 4975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究钢筋高延性混凝土(RHDC)梁裂缝开展机理,共设计四根钢筋高延性混凝土梁和一根普通钢筋混凝土(RC)梁,通过四点弯曲试验研究高延性混凝土极限拉应变和配筋率对构件裂缝宽度、裂缝间距以及裂缝发展高度的影响。研究表明:(1)与RC梁相比,RHDC梁的裂缝数量多且宽度小,加载过程中裂缝发展缓慢;(2)RHDC梁的裂缝宽度和裂缝高度随材料极限拉应变的增大而减小;(3)配筋率对RHDC梁裂缝宽度的影响与对RC梁的影响规律相同,随配筋率增大,RHDC梁裂缝宽度、裂缝高度以及平均裂缝间距均减小。基于试验和相关文献,考虑纤维桥联的贡献,建立RHDC梁的平均裂缝间距和最大裂缝宽度的计算公式,计算结果与试验结果吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓明科
王雪松
张敏
马福栋
罗妍
孙宏哲
关键词:  高延性混凝土  极限拉应变  裂缝宽度  裂缝间距  弯曲性能    
Abstract: In order to explore the mechanism of crack development in reinforced high ductility concrete (RHDC) beams, a total of four reinforced high ductility concrete beams and one ordinary reinforced concrete (RC) beam were designed, and influence of the ultimate tensile strain and reinforcement ratio of high ductility concrete on component crack width, crack spacing and crack development height were studied through four-point bending tests. Research shows that (Ⅰ) compared with RC beams, RHDC beams have more cracks and smaller widths, and the cracks develop slowly during the loading process; (Ⅱ) the crack width and crack height of RHDC beams decrease with the increase of the ultimate tensile strain of the material; (Ⅲ) the influence of the reinforcement ratio on the crack width of RHDC beams is the same as that of RC beams. As the reinforcement ratio increases, the crack width, crack height and average crack spacing of RHDC beams all decrease. Based on experiments and related literature, considering the contribution of fiber bridges, the calculation formulas for the average crack spacing and maximum crack width of RHDC beams are established. The calculation results are in good agreement with the experimental results.
Key words:  high ductility concrete    ultimate tensile strain    crack width    crack spacing    bending performance
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TU375.1  
  TU528  
基金资助: 国家自然科学基金(51708445)
通讯作者:  dengmingke@126.com20120239-1   
作者简介:  邓明科,西安建筑科技大学教授,博士研究生导师。高延性混凝土材料与结构研究所所长,兼任中国工程建设标准化协会砌体结构专业委员会委员、中国土木工程学会纤维混凝土专业委员会委员、中国建筑学会村镇绿色建筑综合防灾专业委员会委员、中国勘察设计协会结构分会理事。主持国家自然科学基金项目3项,主持省部级科研项目4项,累计发表论文120余篇,在《土木工程学报》《建筑结构学报》发表论文10余篇,在Engineering Structures、Construction and Building Materials等国际知名期刊发表SCI论文30余篇。研发的“高延性混凝土及其加固技术”获得国家专利80余项,被列为全国建设行业科技成果推广项目,并成功应用于国内30个省市、数千栋房屋的抗震加固改造。获得全国“混凝土结构教学比赛”一等奖,入选全国“建筑结构行业杰出青年”。
引用本文:    
邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
DENG Mingke, WANG Xuesong, ZHANG Min, MA Fudong, LUO Yan, SUN Hongzhe. Experimental Research and Calculation Method of Cracks in Reinforced High Ductility Concrete Beams. Materials Reports, 2022, 36(2): 20120239-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120239  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20120239
1 Li V C, Leung C K Y. Journal of Engineering Mechanics, ASCE, 1992, 188(11), 2246.
2 Li V C. Montreal: Canadian Society of Civil Engineering, 1998, 1(3), 64.
3 Li V C. Advance Concrete Technology, 2003, 1(3), 215.
4 Deng Mingke, Sun Hongzhe, Liang Xingwen. Industrial Construction, 2014, 44(10), 107(in Chinese).
邓明科, 孙宏哲, 梁兴文. 工业建筑,2014,44(10), 107.
5 Deng Mingke, Liu Haibo, Qin Meng. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2015, 47(5), 660(in Chinese).
邓明科, 刘海勃, 秦萌. 西安建筑科技大学学报(自然科版), 2015, 47(5), 660.
6 Kou Jialiang, Deng Mingke, Liang Xingwen. Building Structure, 2013, 43(1), 59(in Chinese).
寇佳亮, 邓明科, 梁兴文. 建筑结构, 2013, 43(1), 59.
7 Deng Mingke, Chang Yuntao, Liang Xingwen, et al. Industrial Construction, 2013, 43(7), 80(in Chinese).
邓明科, 常云涛, 梁兴文, 等. 工业建筑, 2013, 43(7), 80.
8 Deng Mingke, Sun Hongzhe, Liang Xingwen, et al. Industrial Construction, 2014, 20(5), 85(in Chinese).
邓明科, 孙宏哲, 梁兴文, 等. 工业建筑, 2014, 20(5), 85.
9 Deng Mingke, Ye Wang, Ma Fudong. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 167(in Chinese).
邓明科, 叶旺, 马福栋. 硅酸盐通报, 2019, 38(1), 167.
10 Deng Mingke,Cheng Yuan, Weng Shiqiang, et al. Journal of Composite Materials, 2020, 37(4), 985(in Chinese).
邓明科, 成媛, 翁世强, 等. 复合材料学报, 2020, 37(4), 985.
11 Cai J, Pan J, Yuan F. Journal of Southeast University (English Edition), 2014, 30(3), 330.
12 Zhang Xiufang, Xu Shilang, Hou Lijun. Journal of Civil Engineering, 2009, 41(10), 53(in Chinese).
张秀芳, 徐世烺, 侯利军. 土木工程学报, 2009, 41(10), 53.
13 Zhang Xiufang, Xu Shilang, Hou Lijun. Journal of Civil Engineering, 2009, 42(12), 16(in Chinese).
张秀芳, 徐世烺, 侯利军. 土木工程学报, 2009, 42(12), 16.
14 Sun Wei, Liu Shuguang, Yan Changwang. Concrete, 2017(6), 52(in Chinese).
孙伟, 刘曙光, 闫长旺. 混凝土, 2017(6), 52.
15 GB 50010-2010《混凝土结构设计规范》. 中国建筑工业出版社, 2010.
16 SL 191-2008《水工混凝土结构设计规范》. 北京, 中国水利水电出版社, 2008.
17 JTJ 267-1998《港口工程混凝土结构设计规范》. 北京,人民交通出版社, 1998.
18 GB/T 50152-2012《混凝土结构试验方法标准》, 中国建筑工业出版社, 2012.
19 Liang Xingwen, Shi Qingxuan. Principles of concrete structure design, China Building Industry Press, 2011(in Chinese).
梁兴文, 史庆轩. 混凝土结构设计原理,中国建筑工业出版社, 2011.
20 Fischer G, Li V C. Structural Journal, 2002 99(1), 104.
21 Borges J F, Lima J A. RILEM Symposium, Stockholm, 1957.
22 Dang Zheng, Liang Xingwen, Deng Mingke, et al. Engineering Mecha-nics, 2015, 32(2), 120(in Chinese).
党争, 梁兴文, 邓明科, 等. 工程力学, 2015, 32(2), 120.
23 Deng Mingke, Li Ruizhe, Zhang Yangxi, et al. Engineering Mechanics, 2019, 36(11), 62(in Chinese).
邓明科, 李睿喆, 张阳玺, 等. 工程力学, 2019, 36(11), 62.
[1] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[2] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[3] 彭卓, 朱德举, 史才军, 郭帅成, 李宁. 玄武岩织物增强碱激发矿渣粉煤灰水泥砂浆的耐久性研究[J]. 材料导报, 2021, 35(16): 16058-16064.
[4] 帅亮, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生. 三维五向Cf/Al复合材料不同温度下的轴向弯曲变形力学行为[J]. 材料导报, 2020, 34(20): 20137-20142.
[5] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[6] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[7] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[8] 刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed