Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18165-18170    https://doi.org/10.11896/cldb.19050083
  高分子与聚合物基复合材料 |
缝合泡沫复合材料弯曲性能研究
赖家美1, 阮金琦1, 王森1, 黄志超2
1 南昌大学机电工程学院,南昌 330031
2 华东交通大学载运工具与装备实验室,南昌 330031
Study on the Flexural Behavior of Stitched Foam-core Sandwich Panels
LAI Jiamei1, RUAN Jinqi1, WANG Sen1, HUANG Zhichao2
1 School of Mechanical and Electric Engineering, Nanchang University, Nanchang 330031, China
2 Key Laboratory for Conveyance and Equipment of the Ministry of Education, East China Jiaotong University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 11761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Abaqus分析平台建立了缝合泡沫夹层结构在三点弯曲载荷下的动力学有限元模型,通过杆单元模型模拟缝线树脂柱的受力情况,基于hashin破坏准则考量了面内纤维断裂、基体压溃等损伤情况。对缝合泡沫复合结构和未缝合泡沫复合结构进行了三点弯曲实验,其中缝合泡沫复合结构最大弯曲载荷提高80%左右,弯曲挠度提高30%左右,说明缝线树脂柱的引入可以有效提高缝合泡沫夹层结构的弯曲性能,而模拟得到的实验数据相较真实数据的误差都控制在10%以内,证明了模型的可靠性,利用hashin准则下纤维压缩损伤情况(HSNFCCRT)和hashin准则下基体拉伸损伤情况(HSNMTCRT)的输出证明缝线树脂柱的加入有效地减少了纤维面板内部的层间损伤,表明其面内性能得到了明显的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赖家美
阮金琦
王森
黄志超
关键词:  全厚度缝合复合材料  弯曲性能  缝合工艺  数值模拟    
Abstract: The paper aims at predicting the flexural behavior of through-thickness stitched sandwich panels composed of foam core and glass fiber face sheets. A dynamics finite element model was established for the stitched foam core sandwich composite laminate under bending load.We find that the maximum flexural load of the stitched foam sandwich panels increased by about 80% and the flexural deflection increased by about 30%, which indicates that the introduction of stitched resin columns can effectively improve the flexural behavior of the stitched foam sandwich panels, and the experimental data obtained from the simulation have controlled errors within 10% compared to experiment datas.And the output of HSNFCCRT and HSNMTCRT proves that the addition of stitched resin columns effectively reduces the interlayer damage inside the fiber pa-nels, indicating that its in-plane performance has been significantly improved.
Key words:  through-thickness stitched sandwich composites    flexural behavior    stitching    numerical simulation
                    发布日期:  2020-09-12
ZTFLH:  TQ328.06  
基金资助: 国家自然科学基金(51763016);江西省创新驱动“5511”工程科技创新人才项目(20165BCB18012);江西省研究生创新专项资金 (YC2018-S065)
通讯作者:  laijm@163.com   
作者简介:  赖家美,南昌大学机电工程学院,副教授。2004年毕业于南昌大学,材料加工工程专业博士学位,主要从事聚合物基复合材料制备和性能研究,主持国家自然基金2项、江西省青年科学家培养对象计划项目1项,省(部)级科研项目3项等。
引用本文:    
赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
LAI Jiamei, RUAN Jinqi, WANG Sen, HUANG Zhichao. Study on the Flexural Behavior of Stitched Foam-core Sandwich Panels. Materials Reports, 2020, 34(18): 18165-18170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050083  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18165
1 Stewart R. Rnforced Plastics, 2011, 55(3),22.
2 Sorrentino L, Simeoli G, Iannace S, et al. Composites Part B, 2015, 76,201.
3 Adams D O, Stanley L E. NASA CR-211025.Washington, 2001.
4 Lascoup B, Aboura Z, Khellil K, et al. Composites Science & Technology, 2006, 66(10),1385.
5 Du L, Jiao G Q. Composites Part A,2009, 40, 822.
6 Vaidya U K, Kamath M V, Hosur M V, et al. Journal of Composites Technology & Research, 1999, 21(2),84.
7 Hao J J, Zhang Z G, Li M, et al. Journal of Reinforced Plastics and Composites, 2009, 28(13), 1553.
8 Wang B, Wu L, Jin X, et al. Materials & Design, 2010, 31(1),158.
9 Guilleminot J, Cardona S C, Kondo D, et al. Composites Science and Technology,2008, 68,1777.
10 Wu Z, Zeng J, Xiao J, et al. Journal of Reinforced Plastics & Compo-sites, 2014, 33(16),1496.
11 Panahi B, Ghavanloo E, Daneshmand F. Materials & Design, 2011, 32(5),2611.
12 Gong X H, Lai J M, Chen L L, et al. Polymer Materials Science & Engineering 2018, 34(9),68(in Chinese).
龚小辉, 赖家美, 陈乐乐, 等. 高分子材料科学与工程, 2018, 34(9),68.
13 Velea M N, Lache S. Mechanics of Materials, 2012, 36(7),679.
14 Awad Z K, Aravinthan T, Zhuge Y, et al. Materials & Design, 2013, 45,125.
15 Awad Z K, Aravinthan T, Manalo A. Materials & Design, 2012, 39(39),93.
16 Xu Y H, Yuan X L. Acta Materiae Compositae Sinica, 2013, 30(2),233(in Chinese).
徐艳华, 袁新林. 复合材料学报, 2013, 30(2),233.
17 Devivier C, Pierron F, Wisnom M R. Composites Part A, 2013, 48(1),201.
18 Hou J P, Petrinic N, Ruiz C, et al. Composites Science & Technology, 2000, 60(2),273.
19 González E V, Maimí P, Camanho P P, et al. Composites Science & Technology, 2011, 71(6),805.
20 Sebaee T A A. Composite Structures, 2013, 101(12),255.
21 Soto A,González E V,Maimí P, et al. Composites Part A Applied Science & Manufacturing, 2018, 413(14),109.
22 Lopes C S, Seresta O, Coquet Y, et al. Composites Science & Technology, 2009, 69(7),926.
23 Hwang J S, Choi T G, Lee D, et al. Composite Structures, 2015, 131,17.
24 Shah A, Wang Y, Hao H, et al. Composite Structures, 2015, 131,1132.
25 Chaudhary S K, Singh K K, Venugopal R. Materials Today Proceedings, 2018, 5(1),184.
26 Cabrera N O, Alcock B, Peijs T. Composites Part B, 2008, 39(7),1183.
27 Pereira J R, de Oliveira J A, do Valle A L, et al. General Dentistry, 2011, 59(4),e144.
28 Deshpande V S, Fleck N A. Journal of the Mechanics and Physics of Solids, 2000, 48(6), 1253.
[1] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[2] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[3] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[4] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[5] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[6] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[7] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[8] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[9] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[10] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[11] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[12] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[13] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[14] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[15] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed