Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4067-4073    https://doi.org/10.11896/cldb.19090192
  无机非金属及其复合材料 |
加固层厚度对PVA-RFCC加固梁弯曲性能的影响
杜文平1, 杨才千1,2, 王冲1
1 东南大学混凝土及预应力混凝土结构教育部重点实验室,南京 210096
2 湘潭大学土木工程与力学学院,湘潭 411105
Effect of Composite Reinforcement Layer Thickness on Flexural Behavior of Reinforced Concrete Beams Strengthened with PVA-RFCC
DU Wenping1, YANG Caiqian1,2, WANG Chong1
1 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2 College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
下载:  全 文 ( PDF ) ( 5352KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高加固构件的抗裂性能和极限承载力,提出一种聚乙烯醇纤维增强钢丝网水泥基复合(PVA-RFCC)新型加固材料,是由钢筋网和钢丝网作为增强材料,聚乙烯醇纤维水泥基复合材料(PVA-ECC)作为基体构成。设计7根加固梁和1根对比梁进行四点弯试验,重点探讨了加固层(CRL)厚度对加固梁抗弯性能的影响。同时,对最佳CRL厚度计算表达式进行推导。结果得出:当CRL仅为PVA-ECC或仅含钢丝网(SM)时,试验梁弯曲性能随着CRL厚度增大而降低;当CRL中包含钢筋网(RM)或SM-RM时,试验梁弯曲性能随着CRL厚度的增大而增强。CRL厚度与极限荷载呈二次函数关系,SM-RM是最优加固方式,SM主要提高试验梁延性,RM主要提高试验梁的承载力和刚度。结合试验和理论计算结果,得出CRL为PVA-ECC或仅含SM时,试验梁的最佳CRL厚度为40 mm;仅加RM或SM-RM时,最佳CRL厚度为60 mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜文平
杨才千
王冲
关键词:  钢筋网  钢丝网  加固层厚度  弯曲性能  延性  刚度    
Abstract: In order to both improve the crack resistance and ultimate load carrying capacity of reinforcement member significantly. A new type of polyvinyl alcohol fiber reinforced ferrocement engineered cementitious composite (PVA-RFCC) was proposed, which was composed of reinforcement mesh (RM) and steel mesh (SM) as a reinforcing element and polyvinyl alcohol fiber engineered cementitious composite (PVA-ECC) as a matrix. Seven strengthened beams and one control beam (CB) were prepared and tested using four-point bending system. Composite reinforcement layer (CRL) thickness was main parameter for investigating the influence of flexural behavior. Simultaneously, the expression of optimum CRL thickness was deduced. The results showed that the flexural behavior of the strengthened beams decreased with increasing CRL thickness when PVA-ECC was included or SM was added to the CRL, whereas they increased when RM was included or SM-RM was added to the CRL. The relationship between the CRL thickness and ultimate load was quadratic function. The coupling effect of SM-RM provided the best strengthening method, the SM can improve the ductility, and the RM can improve the load carrying capacity and stiffness. Combined with the experimental and theoretical results, the optimum CRL thickness was 40 mm when the PVA-ECC was included or SM was added to the CRL, and was 60 mm when RM or SM-RM was added in strengthened beams.
Key words:  reinforcement mesh    steel mesh    thickness of composite reinforcement layer    flexural behavior    ductility    stiffness
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU375.1  
基金资助: 湖南省重点研发计划(2018WK2111);湖南省创新技术投资项目(2018GK5028)
通讯作者:  ycqjxx@seu.edu.cn   
作者简介:  杜文平,东南大学博士研究生,专业结构工程,主要从事复合结构加固研究。
杨才千,博士,教授,博士研究生导师。2006年3月获得日本国立茨城大学工学博士学位。主要从事高性能纤维复合材料与复合结构加固等方面的研究。
引用本文:    
杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
DU Wenping, YANG Caiqian, WANG Chong. Effect of Composite Reinforcement Layer Thickness on Flexural Behavior of Reinforced Concrete Beams Strengthened with PVA-RFCC. Materials Reports, 2021, 35(4): 4067-4073.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090192  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4067
1 Zhu J. Experimental study on flexural behavior of fiber reinforced ferroconcrete member. Ph.D. Thesis, Dalian University of Technology, China, 2007 (in Chinese).
朱江. 纤维增强钢丝网混凝土构件抗弯性能试验研究. 博士学位论文, 大连理工大学, 2007.
2 Zhu J, Zhao G F, Li S E. Journal of Dalian University of Technology, 2008(4), 536 (in Chinese).
朱江, 赵国藩, 李士恩. 大连理工大学学报, 2008(4), 536.
3 Chen D S, Tian G. Journal of Hubei University of Technology, 2012, 27(2), 114(in Chinese).
陈东升, 田刚. 湖北工业大学学报, 2012, 27(2), 114.
4 Gao S L, Wang W H. Materials Reports A: Review Papers, 2019, 33(11), 3620(in Chinese).
高淑玲, 王文昌. 材料导报:综述篇, 2019, 33(11), 3620.
5 Ma C K, Apandi N M, Yung S C S, et al. Construction and Building Materials, 2017, 133, 502.
6 Kondraivendhan B, Pradhan B. Construction and Building Materials, 2009, 23, 1218.
7 Bu L T, Ma Y B. Journal of Railway Science and Engineering, 2017, 14(3), 514 (in Chinese).
卜良桃, 马益标. 铁道科学与工程学报,2017, 14(3), 514.
8 Lu C, Lenug C K Y. Cement and Concrete Research, 2017, 95, 240.
9 Liu J W, Zhu Z X, Li F F, et al. Engineering Mechanics, 2011, 38(3), 170 (in Chinese).
刘金伟, 朱湛贤, 李丰丰, 等. 工程力学, 2011, 38(3), 170.
10 Li Q F. Experimental study on flexural behavior of reinforced concrete beams strengthened with composite cover of high strength wire mesh and polymer mortar. Master's Thesis, Fuzhou University, China, 2005 (in Chinese).
林秋峰. 高强钢丝网聚合物砂浆加固混凝土梁抗弯试验研究. 硕士学士论文, 福州大学, 2005.
11 Gao X M. Investigation flexural capacity on the experimental of bonding steel mash and then spraying the high-strength mortar at reinforced concrete beam. Master's Thesis, Xi'an University of Technology, China, 2004 (in Chinese).
高晓梅. 钢丝网外喷高强砂浆加固钢筋砼梁正截面承载力试验研究. 硕士学士论文,西安理工大学,2004.
12 Pan Y, Huang H, Liu B Q, et al. China Journal of Highway and Transport, 2012, 25(4), 67 (in Chinese).
潘元, 黄华, 刘伯权, 等.中国公路学报, 2012, 25(4), 67.
13 Liao H P, Fang S S. In: International conference on structures and buil-ding materials. Guangzhou, 2010, pp.3772.
14 Behera G C, Rao T D G, Rao C B K. Case Studies in Construction Mate-rials, 2016, 4, 15.
15 Zhang K X, Sun Q S. Journal of Building Engineering, 2018, 15, 122.
16 Jiang L M, Shang S P, Huang Z Y. China Civil Engineering Journal, 2005(5), 41 (in Chinese).
蒋隆敏, 尚守平, 黄政宇. 土木工程学报, 2005(5), 41.
17 Xu Q F, Shang S P, Zhu L, et al. China Civil Engineering Journal, 2009, 42(4), 77 (in Chinese).
许清风, 江欢成, 朱雷, 等. 土木工程学报, 2009, 42(4), 77.
18 Al-Kubaisy M A, Jumaat M Z. Construction and Building Materials, 2000, 14, 245.
19 Hunan University.CECS 242:2016 Technical specification for strengthening concrete structures with grid rebar and mortar, China Association for Engineering Construction Standardization, 2016 (in Chinese).
湖南大学.CECS 242:2016水泥复合砂浆钢筋网加固混凝土结构技术规程,北京标准出版社, 2016.
20 Li Q H. Theoretical analysis and experimental investigation on bending performances of reinforced ultra high toughness cementitious composites. Ph.D. Thesis, Dalian University of Technology, China, 2009 (in Chinese).
李庆华. 配筋超高韧性水泥基复合材料受弯构件计算理论与试验研究. 博士学位论文,大连理工大学,2009.
[1] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[2] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[3] 帅亮, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生. 三维五向Cf/Al复合材料不同温度下的轴向弯曲变形力学行为[J]. 材料导报, 2020, 34(20): 20137-20142.
[4] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[5] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[8] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[9] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[10] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[11] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed