Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3154-3160    https://doi.org/10.11896/j.issn.1005-023X.2018.18.010
  金属与金属基复合材料 |
Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测
宋庆功1,2, 许科1, 顾威风1, 甄丹丹2, 郭艳蕊1, 胡雪兰2
1 中国民航大学理学院低维材料与技术研究所,天津 300300;
2 中国民航大学中欧工程师学院,天津 300300
Predictions on the Stability and Ductility of γ-TiAl Co-doped with Zr and Mo
SONG Qinggong1,2, XU Ke1, GU Weifeng1, ZHEN Dandan2, GUO Yanrui1, HU Xuelan2
1 Institute of Low Dimensional Materials and Technology, College of Science, Civil Aviation University of China, Tianjin 300300;
2 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300
下载:  全 文 ( PDF ) ( 1923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理方法,计算研究了Zr和Mo原子双掺杂γ-TiAl合金体系的几何结构、总能量、原子平均形成能、弹性性质、电荷密度分布和布居数。通过对形成能的计算和分析,预测各双掺杂体系均具有能量稳定性,并且Zr原子始终倾向于替代Ti原子,Mo原子的替代倾向不明显。通过对轴比、弹性模量比、电荷密度分布、电荷布居数以及重叠布居数的综合分析,发现Ti11ZrAl11Mo和Ti11MoAl11Zr体系的延性相比纯γ-TiAl体系均有较大改善,并且双掺杂体系的改善效果较单掺杂更为突出。根据弹性模量比和布居数的分析结果预测,Ti12Al10ZrMo可能是一种延性较好的材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋庆功
许科
顾威风
甄丹丹
郭艳蕊
胡雪兰
关键词:  γ-TiAl基合金  Zr和Mo双掺杂  稳定性  延性  第一性原理    
Abstract: Doped with Zr and Mo, the γ-TiAl based alloys systems were investigated by using first-principles method based on the density functional theory. The geometrical structures, total energies, average formation energies of atom, elastic properties, charge density distributions and populations were calculated and analyzed with this method. The calculation and analysis about the formation energies indicated that the doped systems possess energy stability and Zr atoms tended to substitute Ti atoms, while Mo atoms had no evident tendency. The comprehensive analysis about the axial ratios, elastic modulus ratios, charge density distributions, Mulliken populations and overlap populations predicts the ductilities of Ti11ZrAl11Mo and Ti11MoAl11Zr systems were significantly improved compared with the pure γ-TiAl system, and the effects of double doping were more pronounced than that of the single doping. The results of elastic modulus ratios and populations exhibited that Ti12Al10ZrMo system might be a kind of material with excellent ductility.
Key words:  γ-TiAl based alloy    Zr and Mo co-doping    stability    ductility    first-principles
                    发布日期:  2018-10-18
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51201181);中央高校基本科研业务费中国民航大学专项资助项目(3122016L012)
作者简介:  宋庆功:男,1958年生,博士,教授,硕士研究生导师,研究方向为新型材料设计与制备、纳米材料 E-mail:qgsong@cauc.edu.cn
引用本文:    
宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
SONG Qinggong, XU Ke, GU Weifeng, ZHEN Dandan, GUO Yanrui, HU Xuelan. Predictions on the Stability and Ductility of γ-TiAl Co-doped with Zr and Mo. Materials Reports, 2018, 32(18): 3154-3160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.010  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3154
1 Yoshihara M, Kim Y W. Oxidation behavior of gamma alloys designed for high temperature applications[J].Intermetallics,2005,13(9):952.
2 Kunal K, Ramachandran R, et al. Advances in gamma titanium aluminides and their manufacturing techniques[J].Progress in Aerospace Sciences,2012,55:1.
3 Helmut C, Svea M. Design, processing, microstructure, properties and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials,2013,15(4):191.
4 Gerling R, Bartels A, Clemens H. Structural characterization and tensile properties of a high Nb containing gamma-TiAl sheet obtained by powder mentallurgical processing[J].Intermetallics,2004,12(3):275.
5 Luo C, Lv N, Zhu C L, et al. Effects of trace zirconium addition on high temperature mechanical properties of casting TiAl alloy[J].Foundry,2012,61(7):754(in Chinese).
骆晨,吕楠,朱春雷,等.微量Zr对铸造TiAl合金高温力学性能的影响[J].铸造,2012,61(7):754.
6 Song Q G, Yan H Y, Guo F J, et al. An investigation on the stability and thermal property of γ-TiAl doped with Zr-substitution[J].Journal of Functional Materials,2014,45(19):19149(in Chinese).
宋庆功,闫洪洋,果福娟,等.Zr替位掺杂γ-TiAl的稳定性和热学性质研究[J].功能材料,2014,45(19):19149.
7 Wang H Y, Li C Y, Li X S, et al. Influence of Mo doping on the physical properties of TiAl alloy by the first principles[J].Rare Me-tal Materials and Engineering,2015,44(11):2737(in Chinese).
王海燕,历长云,李旭升,等.Mo掺杂对TiAl合金物性影响的第一性原理研究[J].稀有金属材料与工程,2015,44(11):2737.
8 Dang H L, Wang C Y, Yu T. First-principles investigation on alloying effect of Nb and Mo in γ-TiAl[J].Acta Physica Sinica,2007,56(5):2838(in Chinese).
党宏丽,王崇愚,于涛.γ-TiAl中Nb和Mo合金化效应的第一性原理研究[J].物理学报,2007,56(5):2838.
9 Qiu C Z, Liu Y, Huang L, et al. Effect of Fe and Mo additions on microstructure and mechanical properties of TiAl intermetallics[J].Transactions of Nonferrous Metals Society of China,2012,22(3):521.
10 Huang Y Y, Wu W M, Deng W, et al. Behavior of Zr and Nb in TiAl alloy investigated by positron annihilation technique[J].The Chinese Journal of Nonferrous Metals,2000,10(6):796(in Chinese).
黄宇阳,吴伟明,邓文,等.用正电子湮没技术研究Zr和Nb在TiAl合金中的行为[J].中国有色金属学报,2000,10(6):796.
11 Wang Y J, Gu Y P, Gao E Z, et al. Influence of element Mo on microstructure of TiAl based alloy with high Nb content[J].Journal of Shenyang Aerospace University,2016,33(3):47(in Chinese).
王艳晶,谷艳鹏,高恩志,等.Mo对高Nb-TiAl基合金微观组织的影响[J].沈阳航空航天大学学报,2016,33(3):47.
12 Li L, Li X Q, Li Z F, et al. Characterization of Ti-Zr-Cu-Ni-Co-Mo filler and brazed γ-TiAl joint[J].Rare Metal Materials and Engineering,2017,46(8):2214(in Chinese).
李力,李小强,李志锋,等.Ti-Zr-Cu-Ni-Co-Mo钎料的特性及其钎焊γ-TiAl接头的研究[J].稀有金属材料与工程,2017,46(8):2214.
13 Song Q G, Jiang E Y. Study on the structural and energetic properties of two-dimensional ground state of Ag+ion-vacancy in fast ionic conductor Agx TiS2[J].Acta Physica Sinica,2008,57(3):1823(in Chinese).
宋庆功,姜恩永.快离子导体AgxTiS2中Ag+离子-空位的二维基态结构与能量性质研[J].物理学报,2008,57(3):1823.
14 Song Q G, Qin G S, Yang B B, et al. Impurity concentration effects on the structures, ductile and electronic properties of Zr-doped gamma-TiAl alloys[J].Acta Physica Sinica,2016,65(4):244(in Chinese).
宋庆功,秦国顺,杨宝宝,等.杂质浓度对Zr替位掺杂γ-TiAl合金的结构延性和电子性质的影响[J].物理学报,2016,65(4):244.
15 Kawabata T, Tamura T, Izumi O. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl[J].Metallurgical and Materials Transactions A,1993,24(1):141.
16 Xu M. A first-principles study on the phase stability and elastic properties of B2-TiAl based alloy [D].Changsha: Hunan University,2009(in Chinese).
许密.B2型TiAl基合金相稳定性和弹性性质的第一性原理计算[D].长沙:湖南大学,2009.
17 Qiu C Z. Development of the B2-containing TiAl-based intermetallics and its low-temperature superplasticity [D].Changsha: Central South University,2013(in Chinese).
邱从章.含B2相的TiAl基合金及其低温超塑性的研究[D].长沙:中南大学,2013.
18 Pugh S F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philosophical Magazine,1954,45(367):823.
19 Fu C L. Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti[J].Journal of Materials Research,1990,5(5):971.
20 Pabst W, Gregorova E. Effective elastic properties of alumina-zirconia composite ceramics-part 2: Micromechanical modeling[J].The Journal Ceramics-Silikáty,2004,48(1):14.
21 Wang J R, Zhu J, Hao Y J, et al. First-principles study of the structural, elastic and electronic properties of RhB under high pressure[J].Acta Physica Sinica,2014,63(18):185401(in Chinese).
王金荣,朱俊,郝彦军,等.高压下RhB的相变、弹性性质、电子性质及硬度的第一性原理计算[J].物理学报,2014,63(18):185401.
22 Yang Z J, Sun H L, Huang Z W, et al. Research progress of rare earth doped TiAl-based alloys[J].Materials Review A: Review Papers,2015,29(8):85(in Chinese).
杨镇骏,孙红亮,黄泽文,等.稀土掺杂TiAl基合金的研究进展[J].材料导报:综述篇,2015,29(8):85.
23 Dang H L, Wang C Y, Yu T. Light impurity effects on the electro-nic structure in TiAl[J].Journal of Physics-Condensed Matter,2006,18(39):8803.
24 Morinaga M, Saito J, Yukawa N, et al. Electronic effect on the ductility of alloyed TiAl compound[J].Acta Metallurgica et Materialia,1990,38(1):25.
25 Greenberg B A, Antonov O V, Indenbaum V N, et al. Dislocation transformations and the anomalies of deformation characteristics in TiAl-I. Models of dislocation blocking[J].Acta Metallurgica et Materialia,1991,39(2):233.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[7] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[10] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[15] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed