Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020151-9    https://doi.org/10.11896/cldb.21020151
  无机非金属及其复合材料 |
玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究
喻松, 胡翔*, 赵一帆, 朱德举, 史才军
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Research on Durability of Glass Fiber Textile Reinforced Seawater Sea-sand Concrete Exposed to Simulated Marine Environment
YU Song, HU Xiang*, ZHAO Yifan, ZHU Deju, SHI Caijun
Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 8028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了玻璃纤维织物增强海水海砂混凝土(GTR-SWSSC)复合材料于海水浸泡和干湿循环条件下的弯曲性能。在不同干湿循环次数和海水浸泡时间下对玻璃纤维增强混凝土(GTR-SWSSC)进行了四点弯曲试验,对复合材料在模拟海洋服役环境下的抗弯性能进行了评估。同时,探究了环氧树脂对复合材料抗海水腐蚀性能的改善作用,并通过电镜扫描从微观层面对海水浸泡时间、干湿循环次数和环氧树脂涂层的作用进行了分析。研究结果表明GTR-SWSSC的弯曲性能变化符合一定的规律,海水干湿循环和浸泡环境导致了试件内部结构的损伤,使得试件强度有所下降。总体而言,复合材料在海水恶劣环境下的强度呈现较为缓慢的下降趋势,采用环氧树脂进行表面处理能有效提高试件的弯曲强度,延缓试件力学性能的衰退,但是延缓效果在一定时间后随龄期延长逐渐减弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
喻松
胡翔
赵一帆
朱德举
史才军
关键词:  海水海砂混凝土  耐碱玻璃纤维  水下区  潮汐区  海水浸泡  干湿循环  弯曲性能  耐久性    
Abstract: In this work, the flexural behavior of glass fibertextile reinforced seawater sea-sand concrete (GTR-SWSSC) exposed to the simulated marine environment was studied. Four-point bending tests were carried out on GTR-SWSSC after different drying-wetting cycles and seawater immersion time, and the flexural performance of GTR-SWSSC was evaluated. At the same time, the improvement effect of epoxy resin on the resistance of GTR-SWSSC to seawater was investigated and analyzed from the microscopical level by scanning electron microscope (SEM). The results show that the bending properties of GTR-SWSSC conform to a certain regularity, and the exposure to seawater leads to the damage of the internal structure of the specimen, which makes the bending strength decrease. In general, the bending strength of the GTR-SWSSC exhibits a relatively slow decline trend in the harsh marine environment. Surface treatment with epoxy resin can effectively improve the bending strength and delay the decline of the mechanical properties of GTR-SWSSC, but the delaying effect is gradually weakened with the increase of the age after a certain period of time.
Key words:  seawater sea-sand concrete    alkali resistant glass fiber    underwater zone    tidal zone    seawater immersion    wetting and drying cycle    bending performance    durability
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2018YFC0705400);国家自然科学基金(U1806225;51638008)
通讯作者:  xianghu@hnu.edu.cn   
作者简介:  喻松,2017年6月毕业于贵州大学,获工学学士学位。现为湖南大学土木工程学院硕士研究生,在史才军教授的指导下进行研究,主要从事织物增强海水海砂混凝土力学性能与耐久性能的研究。
胡翔,湖南大学土木工程学院副教授。本科与硕士就读于湖南大学土木工程学院结构工程专业,博士毕业于比利时根特大学土木与结构工程专业。已发表学术论文30余篇,出版英文著作一部,研究方向为水泥基材料耐久性测试与表征、水泥混凝土氯离子传输、氯离子结合和钢筋锈蚀。
引用本文:    
喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
YU Song, HU Xiang, ZHAO Yifan, ZHU Deju, SHI Caijun. Research on Durability of Glass Fiber Textile Reinforced Seawater Sea-sand Concrete Exposed to Simulated Marine Environment. Materials Reports, 2022, 36(9): 21020151-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020151  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020151
1 Mohammed T U, Hamada H, Yamaji T. Cement and Concrete Research, 2004, 34(4), 593.
2 Guo M, Hu B, Xing F, et al. Construction and Building Materials, 2020, 234, 117339.
3 Da B, Yu H, Ma H, et al. Construction and Building Materials, 2016, 122, 81.
4 Xiao J, Qiang C, Nanni A, et al. Construction and Building Materials, 2017, 155, 1101.
5 Wang H T, Wu G. Composite Structures, 2018, 184, 1204.
6 Wang H T, Wu G. Thin-Walled Structures, 2018, 127, 459.
7 Ceroni F, Cosenza E, Gaetano M, et al. Cement and Concrete Compo-sites, 2006, 28(10), 857.
8 Teng J G. China Civil Engineering Journal, 2018, 51(12), 1(in Chinese).
滕锦光. 土木工程学报, 2018, 51(12), 1.
9 Dong Z, Wu G, Zhao X L, et al. Construction and Building Materials, 2018, 192, 671.
10 Dong Z, Wu G, Zhu H. Construction and Building Materials, 2019, 206, 432.
11 Dong Z, Wu G, Zhao X L, et al. Construction and Building Materials, 2019, 213, 32.
12 Li Y L, Teng J G, Zhao X L, et al. Engineering Structures,2018,160,71.
13 Li Y L, Zhao X L, Singh R K R, et al. Thin-Walled Structures, 2016, 108, 163.
14 Li Y L, Zhao X L, Singh R K R, et al. Thin-Walled Structures, 2016, 106, 390.
15 Cromwell J R, Harries K A, Shahrooz B M. Construction and Building Materials, 2011, 25(5), 2528.
16 Zhang L L, Zhang L, Ma J X. China Civil Engineering Journal, 2010, 43(1), 77(in Chinese).
张玲玲,张陵,马建勋. 土木工程学报,2010,43(1),77.
17 Wang Z, Zhao X L, Xian G, et al. Construction and Building Materials, 2017, 156, 985.
18 Guo F, Al-Saadi S, Raman R K S, et al. Corrosion Science,2018,141,1.
19 Nobili A. Construction and Building Materials, 2016, 105, 465.
20 Mumenya S W, Tait R B. Cement and Concrete Composites, 2010, 32(8), 580.
21 Donnini J. Composites Part B, Engineering, 2019, 174, 107047.
22 Yin S, Jing L, Yin M, et al. Cement and Concrete Composites, 2019, 96, 118.
23 Colombo I G, Colombo M, Di Prisco M. Cement and Concrete Research, 2015, 73, 169.
24 Williams P N. Usability of textile reinforced concrete: structural perfor-mance, durability and sustainability. Ph.D Thesis, Chalmers University of Technology, Sweden, 2015.
25 Kong K, Mesticou Z, Michel M, et al. Composite Structures, 2017, 179, 107.
26 Dong Z, Wu G, Zhao X L, et al. Construction and Building Materials, 2018, 192, 671.
27 Hempel S, Butler M, Mechtcherine V.In:3rd ICTR International Confe-rence on Textile Reinforced Concrete Brameshuber. Germany, 2015, pp. 225.
28 Butler M, Mechtcherine V, Hempel S. Materials and Structures, 2010, 43(10), 1351.
29 Rocha I, Raijmaekers S, Nijssen R P L, et al. Composite Structures, 2017, 174, 110.
30 Sethi S, Ray B C. Advances in Colloid and Interface Science, 2015, 217, 43.
31 Bergeret A, Pires I, Foulc M P, et al. Polymer Testing,2001,20(7),753.
32 Butler M, Mechtcherine V, Hempel S. Cement and Concrete Composites, 2009, 31(4), 221.
[1] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[2] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[3] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[4] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[5] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[6] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[7] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[8] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[9] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[10] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[11] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[12] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[13] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[14] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[15] 杨林, 张云升, Carmen Andrade, 张春晓. 非饱和砂浆氯离子传输与pH分布相关性研究[J]. 材料导报, 2021, 35(18): 18064-18068.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed