Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18064-18068    https://doi.org/10.11896/cldb.20070324
  无机非金属及其复合材料 |
非饱和砂浆氯离子传输与pH分布相关性研究
杨林1, 张云升2, Carmen Andrade3, 张春晓4
1 郑州大学水利科学与工程学院,郑州 450001
2 兰州理工大学土木工程学院,兰州 730050
3 International Center for Numerical Methods in Engineering, CIMNE, Spain
4 中国人民解放军军事科学院国防工程研究院工程防护研究所,洛阳471023
Study on the Correlation Between Chloride Ion Transportation and pH Distribution in Unsaturated Mortar
YANG Lin1, ZHANG Yunsheng2, ANDRADE Carmen3, ZHANG Chunxiao4
1 School of Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 International Center for Numerical Methods in Engineering, CIMNE, Spain
4 Institute of Engineering Protection, Institute of Defense Engineering, Academy of Military Science of PLA, Luoyang 471023, China
下载:  全 文 ( PDF ) ( 4662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了非饱和砂浆在氯盐溶液中持续浸泡、干湿循环作用下的氯离子传输和pH分布,并考虑了碳化作用对氯离子传输的影响,重点分析了氯离子传输与pH分布的相关性。研究结果表明:干燥砂浆在NaCl溶液中持续浸泡不同时间后,氯离子浓度分布与pH分布没有表现出明显的相关性;然而,在干湿循环作用下,非饱和砂浆的氯离子传输与pH分布密切相关,砂浆近表层氯离子浓度的减小与pH下降具有一致性;非饱和预碳化砂浆经干湿循环之后的氯离子浓度分布与pH分布具有相同的特征,均呈“S”型,碳化作用使砂浆的pH分布发生改变,进而影响了氯离子传输行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨林
张云升
Carmen Andrade
张春晓
关键词:  非饱和混凝土  氯离子  碳化  耐久性    
Abstract: Chloride ion transportation and pH distribution of unsaturated mortar suffered from continuous immersion in chloride solution and drying-wetting cycles were investigated, and the influence of carbonation on chloride transportation was considered. What's more, the correlation between chloride transportation and pH distribution was analyzed systematically. The results show that the chloride transportation and pH distribution do not show a direct correlation when the dried mortars were suffered from continuous immersing in NaCl solution for different time. However, under the drying-wetting cycles, the chloride transportation of unsaturated mortar is closely related to pH distribution. The decrease of chloride content near the surface of mortar is consistent with the decrease of pH. For the unsaturated pre-carbonated mortar suffered from drying-wetting cycles, the chloride content distribution and pH distribution show the same characteristics, similar to “S” shape. The carbonation of unsaturated mortar changes the pH distribution and further affects the behavior of chloride transportation.
Key words:  unsaturated concrete    chloride ion    carbonation    durability
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51808508;52078468)
作者简介:  杨林,2017年获得东南大学博士学位。目前在郑州大学水利科学与工程学院工作,副教授,主要从事水泥基材料耐久性研究。
张春晓,军事科学院国防工程研究院工程防护研究所,副研究员。2010年6月毕业于武汉理工大学,获材料学硕士学位。同年加入国防工程研究院工程防护研究所工作至今,主要从事工程防护材料的技术研发。在国内外重要期刊发表文章20余篇,申报发明专利10余项。
引用本文:    
杨林, 张云升, Carmen Andrade, 张春晓. 非饱和砂浆氯离子传输与pH分布相关性研究[J]. 材料导报, 2021, 35(18): 18064-18068.
YANG Lin, ZHANG Yunsheng, ANDRADE Carmen, ZHANG Chunxiao. Study on the Correlation Between Chloride Ion Transportation and pH Distribution in Unsaturated Mortar. Materials Reports, 2021, 35(18): 18064-18068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070324  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18064
1 Yang L. Investigation of moisture and chloride ion transport in unsaturated concrete. Ph.D. Thesis, Southeast University, China, 2017 (in Chinese).
杨林. 非饱和混凝土水分与氯离子传输行为研究. 博士学位论文, 东南大学, 2017.
2 Pan Z C, Chen A R.Journal of Tongji University (Natural Science), 2011, 39(3),314 (in Chinese).
潘子超, 陈艾荣.同济大学学报(自然科学版), 2011, 39(3), 314.
3 Erik P N, Mette R G. Cement and Concrete Research, 2003, 33,133.
4 Fraj A B, Bonnet S, Khelidj A.Construction and Building Materials, 2012, 35,761.
5 Hong K, Hooton R D.Cement and Concrete Research, 1999, 29,1379.
6 Xu G, Li Y, Su Y, et al.Structural Concrete, 2015, 16(2), 289.
7 Chang H L, Mu S, Xie D, et al.Construction and Building Materials, 2017, 131,16.
8 Cao W Q. Chloride transport and cover protection of concrete under drying-wetting cycles. Ph.D. Thesis, Xi'an University of Architecture & Technology, China, 2013(in Chinese).
曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护. 博士学位论文, 西安建筑科技大学, 2013.
9 Chang H. Chloride condensation and its mechanism in surface layer of cementitious-based materials under cyclic wetting-drying condition. Ph.D. Thesis, Southeast University, China, 2018(in Chinese).
常洪雷. 干湿交替下水泥基材料表层氯离子富集现象及形成机制研究. 博士学位论文, 东南大学, 2018.
10 Martys N S, Ferraris C F. Cement and Concrete Research, 1997, 27(5),747.
11 Neithalath N.ACI Material Journal, 2006, 103(3), 209.
12 Nielsen E P, Geiker M R. Cement and Concrete Research, 2003, 33,133.
13 Ababneh A, Benboudjema F, Xi Y.Journal of Materials in Civil Enginee-ring, 2003, 15(2),183.
14 Chang H, Mu S, Feng P.Cement & Concrete Research, 2018, 103, 95.
15 Chang H.Cement & Concrete Composites, 2017, 84, 1.
16 Castro J, Bentz D, Weiss J. Cement & Concrete Composites, 2011, 33, 805.
17 Zhutovsky S, Hooton R D.Construction and Building Materials, 2019, 215,918.
18 Wang X G, Shi C J, He F Q, et al.Journal of the Chinese Ceramic Society, 2013, 41(2), 187(in Chinese).
王小刚, 史才军, 何富强, 等.硅酸盐学报, 2013, 41(2),187.
19 Nguyen P T, Amiri O.Construction and Building Materials, 2014, 50, 492.
20 Friedmann H, Amiri O, At-Mokhtar A.Cement and Concrete Research, 2008, 38,1394.
21 Niu D T, Sun C T.Journal of the Chinese Ceramic Society, 2013, 41(8), 1094(in Chinese).
牛荻涛, 孙丛涛.硅酸盐学报, 2013, 41(8), 1094.
[1] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[2] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[3] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[4] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[5] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[6] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[7] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[8] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[9] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[10] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[11] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[12] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[13] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[14] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[15] 张跃, 申林方, 王志良, 董武书. 考虑温度时变效应氯离子侵蚀混凝土的格子Boltzmann数值模型[J]. 材料导报, 2021, 35(16): 16035-16041.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed