Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20050237-7    https://doi.org/10.11896/cldb.20050237
  无机非金属及其复合材料 |
缓释技术在混凝土中的应用研究进展
单广程1, 陈健1,2, 乔敏1,2, 高南箫1, 赵爽1, 吴井志1,2, 朱伯淞1, 冉千平1,3
1 江苏苏博特新材料股份有限公司,高性能土木工程材料国家重点实验室,南京 211103
2 博特新材料泰州有限公司,江苏 泰州 225474
3 东南大学材料科学与工程学院,南京 211189
Research Progress of Controlled-release Technology in the Field of Concrete
SHAN Guangcheng1, CHEN Jian1,2, QIAO Min1,2, GAO Nanxiao1, ZHAO Shuang1, WU Jingzhi1,2, ZHU Bosong1, RAN Qianping1,3
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103, China
2 Bote New Materials Taizhou Co., Ltd., Taizhou 225474,Jiangsu, China
3 School of Material Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 2605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着我国基础设施建设的迅速发展,混凝土作为现代土木工程设施建设中最重要的工程材料之一,市场对其工作性、耐久性、施工性等综合性能的要求越来越高。目前混凝土在实际应用当中存在着一些问题,如混凝土因开裂而导致的钢筋锈蚀、结构强度和承载力下降等耐久性问题,混凝土坍落度损失问题,水泥水化过快等问题。因此,研究人员致力于研发具有缓释效果的混凝土外加剂以解决上述各类问题。
缓释技术的出现引起人们的极大关注,在20世纪50年代首先应用于农业方面,随后应用于医学药物研发方面,并逐渐应用于化肥、农药、化工等领域。在混凝土领域,缓释技术目前已在水泥基材料的内养护、裂缝自修复、膨胀历程控制、阻锈与水化历程调控等方面被广泛应用。
在混凝土领域已取得成功应用的缓释材料包括高吸水树脂(SAP)、微胶囊、缓释型聚羧酸减水剂等。SAP通过复杂的分子结构在水泥拌和过程中吸收大量水分,在后期硬化干燥过程中,及时缓慢释放出水分子,从而达到抑制水泥基材料变形开裂的效果。微胶囊将修复剂以复合材料的形式存储起来,使其在裂缝等外力作用下释放出来,发挥抑制裂纹的扩展并修复裂纹的作用。在混凝土坍落度研究领域,采用碱缓释的技术方案实现了分散剂分子在水泥环境中的持续释放,使得混凝土的流动度可以长时间保持稳定。
本文根据缓释技术的类型和特点,分别从物理型缓释和化学型缓释两个方面介绍了缓释技术在混凝土领域中的应用及其进展,主要讨论了混凝土缓释技术在水泥基材料的内养护、裂缝自修复、阻锈与坍落度保持等性能调控中的应用,希望能为研发性能更优良的用于混凝土领域的缓释材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单广程
陈健
乔敏
高南箫
赵爽
吴井志
朱伯淞
冉千平
关键词:  缓释技术  物理缓释  化学缓释  混凝土  耐久性  阻锈  聚羧酸减水剂    
Abstract: In recent years,with the rapid development of infrastructure in our country, concrete is one of the most important engineering materials in the construction of modern civil engineering facilities, the market has increasingly higher requirements on its workability, durability, constructability. At present, there are some problems in the practical application of concrete, such as, durability problems caused by cracking of concrete included the corrosion of steel bars and decrease in structural strength and bearing capacity, the slump loss problems of concretes, and excessive cement hydration. Therefore, researchers are committed to researching concrete admixtures with control-release effects to solve various problems.
The emergence of control-release technology hasattracted great attention. It was first applied to agriculture in the 1 950 s, then applied to the research of medical drugs, and the gradually applied to the fields of fertilizers, pesticides and chemical industries. In the field of concrete, control-release technology has been applied in the performance control of cement-based materials such as internal curing, crack self-repairing, expansion process control, rust inhibition and hydration process control.
Controlled-release materials that have been successfully applied in the field of concrete include SAP, microcapsules, and controlled-release polycarboxylate superplasticizer,etc. SAP absorbs a large amount of water during the cement mixing process through its complex molecular structure, and slowly releases water in time during the later hardening and drying process, so as to achieve the effect of inhibiting the deformation and cracking of cement-based materials. The microcapsule stores the repair agent in the form of composite material, so that it can be released under the external forces such as cracks, so as to inhibit the expansion of cracks and repair the cracks. In the research field of concrete slump, the continuous release of dispersant molecules in cement environment is realized by the technology of alkali-responsive slow-release, so that the fluidity of concrete can be kept stable for a long time.
According to the types and characteristics of controlled-release technology, the applications and progress of controlled-release technology in concretes are respectively reviewed from physical and chemical controlled-release technology in this paper. The applications of concrete controlled-release technology in the performance control of cement-based materials such as internal curing, crack self-repairing, rust resistance, and slump retention are introduced. This article is expected to provide a reference for the research of controlled-release material with better perfor-mance in the field of concrete.
Key words:  controlled-release technology    physical controlled-release    chemical controlled-release    concrete    durability    rust resistance    polycarboxylic superplasticizer
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2020YFC1909900);国家自然科学基金杰出青年基金项目(51825203);国家自然科学基金面上项目(52178213);江苏省自然科学基金项目(BK20211030;BK20211031);中国国家铁路集团有限公司科技研究开发计划(N2020G046;K2020G035)
通讯作者:  qiaomin@cnjsjk.cn   
作者简介:  单广程,硕士,工程师。2017年毕业于南京大学,同年入职江苏苏博特新材料股份有限公司从事技术研发工作至今,主要从事高性能混凝土化学外加剂的研发等工作。
乔敏,高级工程师,南京市有突出贡献中青年专家,江苏省杰出青年岗位能手,江苏苏博特新材料股份有限公司研究所所长,博特新材料泰州有限公司总工程师,本硕博毕业于南京大学高分子化学与物理专业。主持完成国家自然科学基金等国家及省部级项目2项,参与完成了国家自然科学基金等国家及省部级项目9项;主持在研江苏省六大人才高峰项目1项,参与在研国家重点研发计划项目、江苏省成果转化项目、铁路总公司重点课题项目的相关研究。一直围绕高性能混凝土化学外加剂的研发及产业化开展深入的研究,开发出功能性混凝土化学外加剂十余种,产品成功应用于港珠澳跨海大桥、乌东德水电站等国家重特大工程,并出口到海外。在Cement and Concrete Research等知名期刊中发表论文共计75篇(其中SCI收录25篇,EI收录41篇);授权发明专利49项,授权国际专利3项;参编协会标准2项。
引用本文:    
单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
SHAN Guangcheng, CHEN Jian, QIAO Min, GAO Nanxiao, ZHAO Shuang, WU Jingzhi, ZHU Bosong, RAN Qianping. Research Progress of Controlled-release Technology in the Field of Concrete. Materials Reports, 2022, 36(5): 20050237-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050237  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20050237
1 Safdar R, Omar A A, Arunagiri A, et al. Journal of Drug Delivery Science and Technology, 2019, 49, 642.
2 Yi S H, Zheng J N, Lv P, et al. Bioconjugate Chemistry, 2018, 29, 2884.
3 Hashemi R, Nassar N N, Almao Pereira P. Energy Fuels, 2013, 27, 2194.
4 Flávio A, Freitas D, Keils D, et al. Fuel, 2019, 241, 1184.
5 Dematos E F, Scopel B S, Dettmer A. Journal of Environmental Chemical Engineering, 2018, 6(2), 1989.
6 Sun X X, Zhou B, Luo Y G, et al. Food Control, 2017, 82(1), 26.
7 Oliveira J, Parisi M C M, Baggio J S, et al. International Journal of Food Microbiology, 2019, 292, 150.
8 Feng W L, Zhao P. Chemical Industry and Engineering, 1996, 13(1), 49(in Chinese).
冯文来, 赵平.化学工业与工程, 1996, 13(1), 49.
9 Yuan Q, Bi Y X, Li F G, et al. Petrochemical Industry Application, 2016, 35(1), 1(in Chinese).
袁青, 毕研霞, 李风光, 等.石油化工应用, 2016, 35(1), 1.
10 Dong L L, Ren C T, Zhang X H, et al. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(4), 74(in Chinese).
董路路, 任春涛, 张新华, 等.山东理工大学学报(自然科学版), 2020, 34(4), 74.
11 Liu J P, Yu C, Shu X, et al.Cement and Concrete Research, 2019, 124, 105834.
12 Wang F Z, Yang J, Hu S G, et al.Cement and Concrete Research, 2016, 81, 112.
13 Kang S H, Hong S G, Moon J.Cement and Concrete Research, 2017, 97, 73.
14 Schroefl C, Mechtcherine V, Vontobel P, et al. Cement and Concrete Research, 2015, 75, 1.
15 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409 (6822), 794.
16 Kanellopoulos A, Giannaros P, Al-Tabba A. Construction and Building Materials, 2016, 122, 577.
17 Beglarigale A, Seki Y, Demir N Y, et al. Construction and Building Materials, 2018, 162, 57.
18 Milla J, Hassan M M, Rupnow T, et al. Construction and Building Materials, 2019, 201, 526.
19 Qiao M, Ran Q P, Liu J P.Polymers and Polymer Composites, 2013, 21, 42.
20 Sun Z P, Wu L L, Hu K Y, et al. Concrete,2019(6),51(in Chinese).
孙振平, 吴乐林, 胡匡艺, 等.混凝土, 2019(6), 51.
21 Liu J Z, Yang Y, Zhang Q, et al.Advances in Cement Research, 2018, 30(7), 285.
22 Li W M, Qin X M, Li Q Y, et al.Ageochemicals, 2014, 53(6), 394(in Chinese).
李文明, 秦兴民, 李青阳, 等.农药, 2014, 53(6), 394.
23 Yu S T, Huang J T, Li Q Y, et al.Environmental Protection Science, 2019, 45(1), 105(in Chinese).
于淑亭, 黄建涛, 李沁原, 等.环境保护科学, 2019, 45(1), 105.
24 Zhang J B. Effects on fracture properties of concrete for using SAP. Master's Thesis, Dalian University of Technology, China, 2018(in Chinese).
张珈碧. 高吸水树脂对混凝土断裂性能影响的研究. 硕士学位论文, 大连理工大学, 2018.
25 Assmann A, Reinhardt H W. Cement and Concrete Research, 2014, 58, 179.
26 Shen D J, Wang X D, Cheng D B, et al.Construction and Building Materials, 2016, 106, 512.
27 Shen D J, Wang T, Chen Y, et al.Construction and Building Materials, 2015, 99, 246.
28 Jensen O M, Hansen P F. Cement and Concrete Research, 2001, 31, 647.
29 Lopez M, Kahn L F, Kurtis K E. ACI Materials Journal, 2018, 105(3), 265.
30 Kong X M, Zhang Z L. Journal of Building Materials, 2014, 17(4), 559(in Chinese).
孔祥明, 张珍林.建筑材料学报, 2014, 17(4), 559.
31 Paiva H, Esteves L P, Cachim P B, et al. Construction and Building Materials, 2009, 23(2), 1141.
32 Craeye B, Geirnaert M, De Schutter G. Construction and Building Materials, 2011, 25, 1.
33 Zhang Z Q. Influence and mechanism of SAP on the properties of cement concrete. Master's Thesis, Jilin University, China, 2019(in Chinese).
张志强. 高吸水树脂对水泥混凝土性能的影响及机理研究. 硕士学位论文, 吉林大学大学, 2019.
34 Cusson D, Lounis Z, Daigle L.Cement and Concrete Composites, 2013, 32, 339.
35 Bentur A, lgarashi S, Kovler K.Cement and Concrete Research, 2001, 31, 1587.
36 Jensen O M, Hansen P F. Cement and Concrete Research, 2002, 32(6), 973.
37 Hu S G, Zhou Y F, Wang F Z, et al. Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(1), 1(in Chinese).
胡曙光, 周宇飞, 王发洲, 等.华中科技大学学报(城市科学版), 2008, 25(1), 1.
38 Espinoza-Hijazin G, Lopez M. Construction and Building Materials, 2011, 25 (3), 1236.
39 Peyratout C S, Dahne L.Angewandte Chemie International Edition, 2004, 43(29), 3762.
40 Luo Y P. Synthesis and application of self-healing microcapsules. Master's Thesis, South China University of Technology, China, 2011(in Chinese).
罗永平.自修复微胶囊的合成与应用研究. 硕士学位论文, 华南理工大学, 2011.
41 Wang Z H, Zhu J C, Chen H Y. Modern Food Science and Technology, 2005, 21(3), 165(in Chinese).
王忠合, 朱俊晨, 陈惠音.现代食品科技, 2005, 21(3), 165.
42 Song Z J, Cai H C, Liu Y Q, et al. China Concrete and Cement Pro-ducts, 2020(2), 10(in Chinese).
宋子健, 蔡焕春, 刘永琦, 等.混凝土与水泥制品, 2020(2), 10.
43 Zhang J N, Wang Y Y.Journal of Shandong Yingcai University, 2019, 9(3), 32(in Chinese).
张家宁, 王媛媛.山东英才学院学报, 2019, 9(3), 32.
44 Mostavi E, Asadi S, Hassan M M, et al.Journal of Materials in Civil Engineering, 2015, 27(12), 04015035.
45 Perez G, Erkizia E, Gaitero J, et al.Materials Chemistry and Physics, 2015, 165, 39.
46 Choi Y C, Cho Y K, Shin K J, et al.KSCE Journal of Civil Engineering, 2016, 20(1), 282.
47 Ballweg T, Daake H, Hanselmann D, et al.Applied Materials Today, 2018, 11, 231.
48 Zhan J. Preparation of polymer/rust inhibitor microcapsules by centrifugal-coating method and characterization of rust resistance.Master's Thesis, Shenzhen University, China, 2017(in Chinese).
詹嘉. 离心-包衣法制备聚合物/阻锈剂微胶囊及其阻锈性能的研究. 硕士学位论文, 深圳大学, 2017.
49 Dong B Q, Wang Y S, Fang G H, et al.Cement and Concrete Composites, 2015, 56, 46.
50 Dong B Q, Wang Y S, Ding W J, et al.Construction and Building Materials, 2014, 56, 1.
51 Zuo J D, Li H B, Zhan J, et al.Cement and Concrete Composites, 2020, 105, 103438.
52 Dry C M, Millan W M.Proceedings of SPIE-the International Society for Optical Engineering, 1996, 2718, 26.
53 Araujo M A, Tittelboom K V, Feiteira J, et al. In: IOP Conference Series: Materials Science and Engineering.Riga,LATVIA,2017,pp.251.
54 Zhang F. Research on the effects of sustained-release polycarboxylate superplasticizer on concrete performance.Master's Thesis, Chongqing University, China, 2017(in Chinese).
张帆. 缓释型聚羧酸减水剂对混凝土性能影响的研究. 硕士学位论文, 重庆大学, 2017.
55 Fu C F. Study on molecular structure and slump retention mechanism of polycarboxylate superplasticizer. Master's Thesis, Wuhan University of Technology, China, 2012(in Chinese).
傅承飞. 聚羧酸减水剂的保坍性能及其构性关系研究. 硕士学位论文, 武汉理工大学, 2012.
56 Ye J X, Chen S L, Zhong Y X, et al. Guangzhou Architecture,2019, 47(2), 29(in Chinese).
叶嘉欣, 陈胜利, 钟永兴, 等.广州建筑, 2019, 47(2), 29.
57 Zhang L R, Kong X M, Xing F, et al.Journal of Applied Polymer Science, 2018, 135(5), 45753.
58 Plank J, Pollmann K, Zouaoui N, et al.Cement and Concrete Research, 2008, 38(10), 1210.
59 Hamada D, Sato H, Yamamuro H, et al. Special Publication, 2003, 217,127.
60 Lin X J, Liao B, Zhang J F, et al.Construction and Building Materials, 2019, 210, 162.
61 Liu H, Pang H, Ou J, et al. Journal of Applied Polymer Science, 2014, 131(19), 40856.
62 Yu X, Yu C, Ran Q P, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 181(in Chinese).
余鑫, 于诚, 冉千平, 等.硅酸盐学报, 2018, 46(2), 181.
63 Cheung J, Jeknavorian A, Roberts L, et al. Cement and Concrete Research, 2011, 41, 1289.
64 Ma B G, Zhang L, Zhang P J, et al. Journal of the Chinese Ceramic Society, 2004, 32(10), 1285(in Chinese).
马保国, 张莉, 张平均, 等.硅酸盐学报, 2004, 32(10), 1285.
65 Zhang H, Wang W B, Li Q L, et al. Construction and Building Mate-rials, 2018, 173, 317.
66 Lyu Z F, Yu C, She W N, et al. Journal of Building Materials, 2016, 19(4), 625(in Chinese).
吕志锋, 于诚, 佘维娜, 等.建筑材料学报, 2016, 19(4), 625.
[1] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[2] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[3] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[4] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[5] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[6] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[7] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[8] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[9] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[10] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[11] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[12] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[13] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[14] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[15] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed