Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120067-6    https://doi.org/10.11896/cldb.20120067
  无机非金属及其复合材料 |
碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究
于琦1,2, 万小梅1,3, 赵铁军1,3, 王腾1, 韩笑1, 孙忠涛1
1 青岛理工大学土木工程学院,山东 青岛 266033
2 青岛青建新型材料集团有限公司,山东 青岛 266108
3 青岛理工大学蓝色经济区工程建设与安全山东省协同创新中心,山东 青岛 266033
Investigation on Resistance of Chloride Penetration of Alkali Activated Slag Concrete and Related Electrical Test Methods
YU Qi1,2, WAN Xiaomei1,3, ZHAO Tiejun1,3, WANG Teng1, HAN Xiao1, SUN Zhongtao1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong,China
2 Qingdao Qingjian New Material Group Co., Ltd, Qingdao 266108, Shandong, China
3 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University ofTechnology, Qingdao 266033,Shandong, China
下载:  全 文 ( PDF ) ( 3311KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用交流电阻率法、电通量法和快速氯离子迁移法(RCM)对碱激发矿渣混凝土的抗氯离子渗透性进行评价,并分析其变化机理。同时结合氯盐环境长期暴露试验,以氯离子迁移系数为参考,探讨上述三种电参数测试方法对碱矿渣混凝土的适用性。结果表明:NaOH激发矿渣混凝土较水玻璃激发矿渣混凝土的抗氯离子侵蚀能力强;掺入粉煤灰会增大碱矿渣混凝土孔隙率,削弱其抗氯离子侵蚀能力;交流电阻率法、电通量法和RCM法评价结果之间有较强相关性,且对碱矿渣混凝土都有较好的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于琦
万小梅
赵铁军
王腾
韩笑
孙忠涛
关键词:  碱激发矿渣混凝土  抗氯离子渗透性  电阻率  电通量法  快速氯离子迁移法    
Abstract: Alternating current resistivity method, electric flux method and rapid chloride migration method (RCM) were applied to evaluatethe resistance of chloride penetration in alkali-activated slag concrete and the evolution mechanism was analyzed. At the same time, combined with the long-term exposure test of chloride environment, the applicability of the above three electrical parameters test methods to the alkali slag concrete was discussed. The results show that the slag concrete activated by sodium hydroxide behaves higher resistance to chloride penetration than the slag concrete activated by water glass. The addition of fly ash increases the porosity of alkali-activated slag concrete and weakens the ability to resist chloride penetration. There are good correlations among the evaluation results of resistivity method, electric flux method and RCM method, and all of them behave sound applicability to alkali-activated slag concrete.
Key words:  alkali-activated slag concretes    resistance of chloride penetration    electrical resistivity    electric flux method    rapid chloride ion diffusion coefficient method
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878365)
通讯作者:  wanxiaomeiqj@126.com   
作者简介:  于琦,高级工程师,博士研究生,于2018年9月起就读于青岛理工大学土木工程专业。主要从事高性能混凝土、混凝土耐久性及混凝土中氯离子固化机制的研究。
万小梅,青岛理工大学教授,博士研究生导师。主要从事高性能混凝土及混凝土的耐久性,新型胶凝材料混凝土,混凝土中固废资源化利用的研究与教学工作。
引用本文:    
于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
YU Qi, WAN Xiaomei, ZHAO Tiejun, WANG Teng, HAN Xiao, SUN Zhongtao. Investigation on Resistance of Chloride Penetration of Alkali Activated Slag Concrete and Related Electrical Test Methods. Materials Reports, 2022, 36(5): 20120067-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120067  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120067
1 Zhao T J. Concrete Permeability, Science Press, China, 2006,pp.52(in Chinese).
赵铁军. 混凝土渗透性, 科学出版社, 2006,pp.52.
2 Loche J M, Ammar A, Dumargue P. Cement and Concrete Research, 2004, 35(9),1797.
3 Monfore G E. Journal of the PCA Research Development Laboratories, 1968,5, 35.
4 Hansen M R, Leming M L, Zia P, et al. Special Publication, 1993, 140, 121.
5 Feldman R F, Chan G W, Brousseau R J, et al. Materials Journal, 1994, 91(3), 246.
6 Lu X Y,Li C L,Chen M X, et al. China Concrete and Cement Products, 1999(5), 12(in Chinese).
路新瀛, 李翠玲, 陈美霞, 等. 混凝土与水泥制品, 1999(5), 12.
7 Han J G, Li K F. Journal of Building Materials, 2015,18(4),704(in Chinese).
韩建国, 李克非. 建筑材料学报, 2015,18(4),704.
8 Maes M, Gruyaert E, De Belie N. Materials and Structures, 2013, 46(1), 89.
9 He Z X, Shi C J, Hu X, et al. Journal of the Chinese Ceramic Society,2015, 43(8),1111(in Chinese).
何宗旭, 史才军, 胡翔, 等. 硅酸盐学报,2015,43(8),1111.
10 Hu X, Shi C J, Shi Z, et al. Cement and Concrete Composites, 2019,104,103336.
11 Kumar S, Kumar R, Mehrotra S P. Journal of Materials Science, 2010,45(3),607.
12 Bai Y Z. Investigation of mechanical performance and relationship between mechanical and microstructure characterization of alkali-activated slag. Master's Thesis, Qingdao University of Technology, China, 2016(in Chinese).
白云志. 碱激发矿渣的力学性能以及与微观表征的相关性研究. 硕士学位论文, 青岛理工大学, 2016.
13 Liu G Q. Study on mechanism of binding chloride ion in alkali-activated slag. Master's Thesis, Qingdao University of Technology, China,2018(in Chinese).
刘国强. 碱激发矿渣对氯离子的固化机制研究. 硕士学位论文,青岛理工大学, 2018.
14 Cincotto M A, Melo A A, Repette W L.In:Proceedings of the 11th International Congress on the Chemistry of Cement. Durban, South Africa,2003,pp.18781888.
15 Sun J Y, Zhu P N, Wu C H. Bulletin of the Chinese Ceramic Society, 1988(6),16(in Chinese).
孙家瑛, 诸培南, 吴初航. 硅酸盐通报,1988(6),16.
16 Zhang Y. The mechanical properties and transport properties under loa-ding of alkali-activated slag concrete. Master's Thesis, Qingdao University of Technology, China,2017(in Chinese).
张宇. 碱激发矿渣混凝土的力学性能和荷载下的传输性能. 硕士学位论文,青岛理工大学, 2017.
17 Neto A A M, Cincotto M A, Repette W. Cement & Concrete Research, 2008, 38(4), 565.
18 Shi C J. Alkali-activated cements and concretes, Chemical Industry Press, China, 2008,pp.121(in Chinese).
史才军. 碱激发水泥和混凝土, 化学工业出版社, 2008,pp.121.
19 Tuutti K. Corrosion of steel in concrete, CBE Forskning fo 4.82 (Swedish Cement and Concrete Research Institute Stockholm), Sweden, 1982.
20 Jaegermann C. ACI Materials Journal, 1990, 87(4), 333.
21 Costa A, Appleton J. Materials and Structures, 1999, 32, 252.
22 Conciatori D, Sadouki H, Brühwiler E. Cement and Concrete Research, 2008, 38,1401.
23 Polder R B, Peelen W H A. Cement and Concrete Composites, 2002, 24, 427.
[1] 池铭浩, 翁卫祥, 李强. 氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响[J]. 材料导报, 2022, 36(5): 20120167-5.
[2] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[3] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[4] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[5] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[6] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[7] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[8] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[9] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[10] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[11] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[12] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[13] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed