Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120138-5    https://doi.org/10.11896/cldb.20120138
  金属与金属基复合材料 |
(Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能
张光睿1, 姚特1,2, 龚沛2, 乔禹1, 王婷婷1, 梁雨萍1, 郝宏波1
1 包头稀土研究院,白云鄂博稀土资源研究与综合利用国家重点实验室,内蒙古 包头 014030
2 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
The Structure and Magnetic Properties of (Fe81.5Co1.5Ga17)100-xTbx Alloys
ZHANG Guangrui1, YAO Te1,2, GONG Pei2, QIAO Yu1, WANG Tingting1, LIANG Yuping1, HAO Hongbo1
1 State Key Laboratory for Research and Comprehensive Utilization of Rare Earth Resources in Bayan Obo District, Baotou Research Institute of Rare Earths, Baotou 014030,Inner Mongolia, China
2 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 3058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备(Fe81.5Co1.5Ga17)100-xTbx(x=0,0.05,0.10,0.15,0.20)系列合金铸锭,探究了Tb元素添加对Fe81.5Co1.5Ga17合金结构及其磁性能的影响。结果表明,该系列合金均以无序α-Fe体心立方结构为主,加入Tb元素后合金晶格常数增加,I200/I110相对峰强度变化与晶格常数变化趋势一致,合金在[100]晶向择优取向。Tb元素的添加使合金析出富Tb相,并使合金晶粒细化。随着Tb元素含量的增加,合金中分布的富Tb相由分散状态逐渐变为连续的网状结构,并产生枝状晶。(Fe81.5Co1.5Ga17)100-xTbx合金的饱和磁致伸缩系数随x值的增大呈先增大后减小的趋势,x=0.10时合金的饱和磁致伸缩系数达到217×10-6,相比x=0的合金提升11%。该系列合金中,当磁场小于40 kA/m时,x=0的合金的磁致伸缩率最大;当磁场为40~80 kA/m时,x=0.10的合金的磁致伸缩率最大;当磁场为80~120 kA/m时,x=0.20的合金的磁致伸缩率最大;磁场大于120 kA/m后,合金的磁致伸缩基本达到饱和,x=0.10,0.15的合金具有高饱和磁致伸缩系数。该系列合金饱和磁化强度值随Tb元素的增加先增后降,x=0.05时合金的饱和磁化强度达到最大,为210.06 emu/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张光睿
姚特
龚沛
乔禹
王婷婷
梁雨萍
郝宏波
关键词:  Fe-Co-Ga合金  Tb元素添加  富Tb相  磁致伸缩  磁性能    
Abstract: The ingots of (Fe81.5Co1.5Ga17)100-xTbx(x=0,0.05,0.10,0.15,0.20) series alloys were prepared, and the effects of Tb element addition on the structure and magnetic properties of Fe81.5Co1.5Ga17 alloy were investigated. The results show that the disordered α-Fe body centered cubic structure is the main structure in this series of alloys, the lattice constant of the alloys increase with the addition of Tb element, the change of relative peak strength is consistent with the change trend of lattice constant, alloy preferred orientation in[100]crystal direction. The addition of Tb element precipitates Tb-rich phase and makes the alloy grain refined. With the increase of Tb element content, the Tb-rich phase distribution in the alloy gradually changes from a dispersed state to a continuous network structure and produces dendritic crystals. The saturated magnetostrictive coefficient of the alloys increase first and then decreases with the increase of x value. When x=0.10, the saturated magnetostrictive coefficient of the alloy reached 217×10-6, compared with x=0 alloy, the saturated magnetostrictive coefficient increased by 11%. In this series of alloys, when the magnetic field is less than 40 kA/m, the magnetostrictive rate of x=0 alloy is the highest. When the magnetic field is 40—80 kA/m, x=0.10 alloy magnetostriction rate is the highest. When the magnetic field range is 80—120 kA/m, the magnetostrictive rate of the alloy x=0.20 is the highest. When the magnetic field is greater than 120 kA/m, the alloy magnetostrictive basically reaches saturation, x=0.10, 0.15 alloy has high saturation magnetostrictive coefficient. The saturated magnetization value of this series of alloys increases first and then decreases with the increase of Tb elements. When x=0.05, the saturated magnetization value of the alloys reaches the maximum value of 210.06 emu/g.
Key words:  Fe-Co-Ga alloy    Tb element addition    Tb-rich phase    magnetostriction    magnetic property
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TB34  
基金资助: 内蒙古自治区自然科学基金重大项目(2018ZD10)
通讯作者:  hhbo1981@126.com   
作者简介:  张光睿,包头稀土研究院,高级工程师。2005年毕业于兰州大学,2011年获河北工业大学工程硕士学位。主要从事稀土磁致伸缩材料的研发、制备及应用研究工作。
郝宏波,包头稀土研究院,高级工程师,2004年毕业于内蒙古大学,同年进入包头稀土研究院稀土功能材料所工作至今,主要从事磁致伸缩材料研发,重点研究方向为材料的磁致伸缩性能、机理;稀土元素添加对合金性能的影响规律及其机理;合金的制备工艺及产业化技术;磁致伸缩材料的应用。工作以来主持及参加了国家、省市级项目30余项,发表及参与发表科技论文40余篇,授权专利14项,受理专利20项。
引用本文:    
张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
ZHANG Guangrui, YAO Te, GONG Pei, QIAO Yu, WANG Tingting, LIANG Yuping, HAO Hongbo. The Structure and Magnetic Properties of (Fe81.5Co1.5Ga17)100-xTbx Alloys. Materials Reports, 2022, 36(5): 20120138-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120138  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120138
1 Clark A E, Restorff B J, Wun-Fogle M. Magnetics IEEE Transactions on Magnetics, 2000, 36(5),3238.
2 Datta S, Atulasimha J, Mudivarthi C, et al. Journal of Magnetism & Magnetic Materials,2010,322(15),2135.
3 Guruswamy S, Srisukhumbowornchai N, Clark A E, et al. Scripta Materialia,2000,43(3),239.
4 Hu M, Li Q, Li Y, et al. Rare Metal Materials and Engineering, 2000(6),366(in Chinese).
胡明哲, 李强, 李银祥, 等.稀有金属材料与工程,2000(6),366.
5 Wang B, Yan R. Journal of Hebei University of Technology, 2004(2),16(in Chinese).
王博文, 闫荣格.河北工业大学学报,2004(2),16.
6 Emdadi A, Palacheva V V, Balagurov A M, et al. Intermetallics,2018,93,55.
7 Basumatary H, Palit M, Chelvane J A, et al. Scripta Materialia,2008,59(8),878.
8 Clark A E, Restorff J. B, Wun-Fogle M, et al. Journal of Applied Phy-sics, 2007, 101,09C507.
9 Clark A E, Teter J P, Wun-Fogle M. Journal of Applied Physics, 1991, 69(8),5771.
10 Wang B, Guo Z, Zhang Z, et al. Journal of Applied Physics, 1999, 85(5),2805.
11 Summers E M, Lograsso T A, Wun-Fogle M. Journal of Materials Science, 2007, 42(23),9582.
12 Dai L, Cullen J, Wuttig M, et al. Journal of Applied Physics, 2003, 93(10),8627.
13 Jen S U, Tsai T L, Kuo P C, et al. Journal of Applied Physics, 2010, 107(1),1135.
14 Jen S U, Tsai T L, Li M S, et al. Journal of Applied Physics, 2011, 109(7),07A920.
15 Jen S U, Tsai T L. Journal of Applied Physics, 2012, 111(7),07A939.
16 He Y, Jiang C, Wu W, et al. Acta Materialia, 2016, 109,177.
17 Joule J P. XVII. Philosophical Magazine, 1974, 30(199),76.
18 Yao Z, Tian X, Jiang L, et al. Journal of Alloys and Compounds, 2015, 637,431.
19 Ma T, Hu S, Bai G, et al. Applied Physics Letters,2015,106(11),3238.
20 Jiang L, Yang J, Hao H, et al. Applied Physics Letters, 2013, 102(22),222409.1.
21 Fitchorov T I, Bennett S, Jiang L, et al. Acta Materialia, 2014, 73,19.
22 Golovin I S, Balagurov A M, Palacheva V V, et al. Journal of Alloys & Compounds, 2017,707,51.
23 Zhang G, Yao T, Gong P, et al. Journal of Functional Materials, 2021,52(5),5211(in Chinese).
张光睿, 姚特, 龚沛, 等. 功能材料, 2021,52(5),5211.
24 Shen Y, Wang Z. Metrology & Measurement Technique, 2017,44(7),5(in Chinese).
沈亚芹,王知.计量与测试技术,2017,44(7),5.
25 Clark A E, Hathaway K B, Wun-fogle M, et al. Journal of Applied Phy-sics, 2003, 93(10),8621.
26 Zhao L, Tian X, Yao Z, et al. Materials Reports B: Research Papers, 2018, 32(8),127(in Chinese).
赵丽娟, 田晓, 姚占全, 等.材料导报:研究篇, 2018, 32(8),127.
27 Emdadi A, Palacheva V. V, Cheverikin V. V, et al. Journal of Alloys & Compounds, 2018, 758,214.
28 Meng C, Wang H, Wu Y, et al. Rep, 2016, 6(1),34258.
29 Yao Z, Zhao Z, Jiang L, et al. Acta Metallurgica Sinica,2013,49(1),87(in Chinese).
姚占全,赵增祺,江丽萍,等.金属学报,2013,49(1),87.
30 Gong P, Jiang L, Yan W, et al. Chinese Rare Earths,2016(2),91(in Chinese).
龚沛, 江丽萍, 闫文俊, 等. 稀土,2016(2),91.
31 Lograsso T A, Ross A R, Schlagel D L, et al. Journal of Alloys & Compounds,2003,350(1-2),95.
32 Yao Z, Tian X, Jiang L, et al. Journal of Alloys and Compounds, 2015, 637,431.
33 Wang R, Tian X, Yao Z, et al. Chinese Rare Earths,2020,41(2),24.(in Chinese).
王瑞,田晓,姚占全,等.稀土,2020,41(2),24.
34 Jiang L, Zhang G, Yang J, et al. Journal of Rare Earths,2010, 28(S1),409.
35 He Y, Ke X, Jiang C, et al. Advanced Functional Materials, 2018, 28(20),1800858.
36 Wang R, Zhao X, Zhao L, et al. Materials Reports A: Review Papers,2020,34(7),7146.(in Chinese).
王瑞,赵宣,赵丽娟,等.材料导报:综述篇,2020,34(7),7146.
37 Zhang G, Jiang L, Hao H, et al. Chinese Rare Earths, 2013,34(3),32(in Chinese).
张光睿,江丽萍,郝宏波,等.稀土,2013,34(3),32.
38 Yu Q, Jiang L, Zhang G, et al. Chinese Rare Earths, 2010,31(4),21(in Chinese).
于全功, 江丽萍, 张光睿,等.稀土,2010,31(4),21.
39 Emdadi A, Palacheva V, Cheverikin V V, et al. Journal of Magnetism and Magnetic Materials, 2020, 497,165987.
40 Yang J. The Chinese Journal of Nonferrous Metals, 2016,26(4),829(in Chinese).
杨建林.中国有色金属学报,2016,26(4),829.
41 Zhang B, Wang B, Li Y. Chinese Journal of Sensors and Actuators, 2019, 32(8),1157(in Chinese).
张冰,王博文,李云开.传感技术学报, 2019, 32(8),1157.
42 Li K, Wei H, Liu W, et al. Nanotechnology, 2018, 29(18),185501.
43 Li X, Huang W, Yao G, et al. Scripta Materialia, 2017, 129,61.
[1] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[2] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[3] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[4] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[5] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[6] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[7] 胥晓强, 胥永刚. V元素对Fe-16Cr-2.5Mo合金磁机械阻尼的影响[J]. 材料导报, 2021, 35(14): 14115-14119.
[8] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[9] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[10] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[11] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[12] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[13] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[14] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[15] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed