The Effect of Copper on Heat Treatment on the Soft Magnetic Properties of Fe80Si9B11 Amorphous Iron Core during Annealing:a Method to Improve the Temperature Distribution of Amorphous Iron Core
PAN Linru, LI Xuelian, WANG Li, SUN Lutao, WEI Binbin, GUO Chunsheng
School of Mechatronics and Information Engineering, Shandong University (Weihai), Weihai 264209, Shandong, China
Abstract: Fe-based amorphous alloy materials are the most widely used systems in amorphous alloys as magnetic functional materials with excellent performance. Elimination of internal stress through annealing treatment is a key process to improve soft magnetic properties. In this work, the soft magnetic properties of the Fe80Si9B11 amorphous ring cores wrapped with copper strips were investigated by a rapid annealing manner. The experimental results indicate that a reasonable amorphous/copper thickness ratio, annealing temperature and time can make the temperature field more uniform due to the good thermal conductivity of copper can enhance heat transfer, which reduces the coercivity difference at different positions of amorphous iron core, improves the initial permeability of amorphous iron core, and then improves the heat treatment efficiency and soft magnetic properties.
潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
PAN Linru, LI Xuelian, WANG Li, SUN Lutao, WEI Binbin, GUO Chunsheng. The Effect of Copper on Heat Treatment on the Soft Magnetic Properties of Fe80Si9B11 Amorphous Iron Core during Annealing:a Method to Improve the Temperature Distribution of Amorphous Iron Core. Materials Reports, 2022, 36(3): 20090082-4.
1 Klement W, Willens R, Duwez P. Nature, 1960, 187, 869. 2 Wang W H, Dong C, Shek, C. Materials Science & Engineering R Reports, 2004, 44, 45. 3 Alben R, Becker J J, Chi M C, et al. Journal of Applied Physics, 1978, 49(3), 1653. 4 Mischler W R, Rosenberry G M, Frischmann P G, et al. IEEE Transactions on Power Apparatus and Systems, 1981, PER-1 (6), 2907. 5 Ogawa Y, Naoe M, Yoshizawa Y,et al. Journal of Magne-tism and Magnetic Materials, 2006, 304(2),675. 6 Luborsky F E, Frischmann P G, Johnson L A,et al. Journal of Magne-tism and Magnetic Materials , 1978, 8(4), 318. 7 Malkinski L M. Journal of Magnetism and Magnetic Materials, 1995, 140-144(part-P1), 267. 8 Taub A I. Journal of Applied Physics, 1984, 55(6), 1775. 9 Luborsky F E, Becker J J, Mccary R O, et al. IEEE Transactions on Magnetics, 1975, 11(6), 1644. 10 Bitoh T, Makino A, Inoue A. Journal of Applied Physics, 2006, 99(8),08F102. 11 Zhang S Y, Que L Y, Yu C L, et al. China Electric Power(Technology Edition), 2014(5), 71(in Chinese). 张士岩, 阙连元, 于春雷,等.中国电业(技术版), 2014(5), 71. 12 中上贤治. 中国专利, 102741957A, 2012. 13 贾廷力, 付延亮. 中国专利, 205258526U, 2016. 14 董维胜, 刘志远, 朱昭峰等. 中国专利, 110527798A, 2019. 15 唐书辉. 中国专利, 104775014A, 2015. 16 郑立宝, 唐俊祥, 陈炽祥. 中国专利, 107365950A, 2017. 17 夏春静. 中国专利, 207338111U, 2018. 18 Zhang G Z, Li Y H, Wu L C, et al. Materials Reports A:Review Papers, 2020, 34(3), 171(in Chinese). 张国忠, 李艳辉, 吴立成等. 材料导报:综述篇, 2020, 34(3), 171. 19 Zang B, Parsons R, Onodera K, et al. Scripta Materialia, 2017, 132, 68. 20 Zhang T, Yu J Z. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9), 1021(in Chinese). 张涛, 余建祖.北京航空航天大学学报, 2007, 33(9), 1021. 21 Xiao X, Zhang P, Li M. Applied Energy, 2013, 112(4), 1357. 22 Wang C, Lin T, Li N, et al. Renewable Energy, 2016, 96, 960. 23 Chen H, Liu X L, Liu Y Y, et al. Cryogenic, 2019, 227(1), 46(in Chinese). 陈华, 柳秀丽, 刘园园, 等. 低温工程, 2019, 227(1), 46. 24 Liu J Y, Chen W Z, Zhi Q Z. Metallic Functional Materials, 2005(1), 7(in Chinese). 刘静雅,陈文智,支起铮.金属功能材料, 2005(1), 7. 25 Jiang D G, Ao H, Ye Y X, et al. Hot Working Technology, 2015(4), 230(in Chinese). 蒋达国, 敖辉, 叶媛秀,等. 热加工工艺, 2015(4), 230. 26 Wan D F. Magnetic physics, Electronic Industry Press, Beijing, China, 1987, pp.236(in Chinese). 宛德福. 磁性物理, 电子工业出版社, 1987,pp.236. 27 Boglietti A, Cavagnino A, Lazzar M, et al. IEEE Transsctions on Magne-tics, 2003, 39(2),981.