Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20080307-10    https://doi.org/10.11896/cldb.20080307
  无机非金属及其复合材料 |
GeTe热电材料的研究和进展
董源, 徐桂英
北京科技大学材料科学与工程学院,北京 100083
Research and Development of GeTe Thermoelectric Materials
DONG Yuan, XU Guiying
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当今,化石能源短缺和环境污染问题日益严峻,影响了人们的日常生活以及工业生产。世界各国都在寻找能够绿色高效地利用能源的新技术途径。在众多新技术途径中,热电转换技术因具有可以直接把热能转换成电能、不产生气体排放、不需要预先生产热能、仅靠工业生产和日常生活的废热即可发电等特点,受到工业界和学术界越来越广泛的关注。目前已经在深空探测、能源回收、空调制冷、芯片冷却等方面得到应用。
半导体GeTe材料,是一种非常有前景的中温热电材料。在GeTe合成中,一般Ge不能完全参与反应而产生Ge空位,一个Ge空位会产生两个空穴,空穴作为载流子完成电导和电子热导,所以GeTe的热电性能与Ge的参与反应数量有关,受其制备工艺的影响很大。由于Ge不能完全参与反应,产生了大量的空穴载流子,载流子浓度高导致电导率高的同时,电子热导率也很大,限制了GeTe的热电应用。GeTe因为禁带比较窄,并且存在相转变过程,使其有着复杂的热电行为特征。采用不同的元素掺杂和烧结成型工艺会对GeTe的组成、晶体和能带结构及其热电性能产生巨大影响,为探索合适的组成、微观结构和制备工艺以提高GeTe基材料的热电优值提供了可能。此外GeTe基热电材料还具有较好的力学性能,满足高性能热电器件应用对力学性能的要求。这些特性使GeTe基合金成为目前为止在深空探测中得到实际应用的性能优良的p型中温热电半导体材料。本文主要从烧结工艺、元素掺杂、理论计算等方面,较详细地梳理总结了到目前为止对提高GeTe热电性能的探索和研究成果,以期为GeTe基热电材料的深入研究和广泛应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董源
徐桂英
关键词:  热电材料  半导体  GeTe    
Abstract: Nowadays, the shortage of fossil energy and environmental pollution are becoming more and more serious, affecting people's daily life and industrial production. Countries around the world are looking for new ways to use energy in a green and efficient way. Among many new technology approaches, thermoelectric conversion technology has attracted more and more attention from industry and academic circles because it can directly convert heat energy into electric energy without producing gas emissions, without producing heat energy in advance, and can ge-nerate electricity only with waste heat from industrial production and daily life. It has been applied in deep space exploration, energy recovery, air conditioning, chip cooling and so on.
Semiconductor GeTe material is a promising medium temperature thermoelectric material. In GeTe, Ge generally cannot fully participate in the reaction, leading to Ge vacancy. One Ge vacancy will generate two holes, holes as carriers to complete conductance and electron thermal conductance, so the thermoelectric performance of GeTe is related to the number of Ge involved in the reaction, and is greatly affected by its preparation process. As Ge could not fully participate in the reaction, a large number of hole carriers were generated, and the high concentration of carriers resulted in high conductivity as well as high electronic thermal conductivity, which limited the thermoelectric application of GeTe. GeTe has complex thermoelectric behavior characteristics due to its narrow band gap and phase transition process. Different element doping and sintering processes have a great impact on the composition, crystal and energy band structure of GeTe and its thermoelectric properties, which provides the possibility to explore appropriate composition, microstructure and preparation technology to improve the thermoelectric optimal value of GeTe based materials. In addition, GeTe based thermoelectric materials also have good mechanical properties, which can meet the requirements of mechanical properties in the application of high-performance thermoelectric devices. These characteristics make GeTe-based alloy become the p-type medium temperature thermoelectric semiconductor material with good performance which has been applied in deep space exploration so far. In this paper, the exploration and research results of improving GeTe thermoelectric properties so far are summarized in detail from the aspects of sintering process, element doping, theoretical calculation and so on, so as to provide reference for the thermoelectric research and application of GeTe.
Key words:  thermoelectric materials    semiconductor    GeTe
发布日期:  2022-02-10
ZTFLH:  TN37  
基金资助: 国家重点研发计划(2017YFF0204706);中央高校基本科研业务费专项资金资助项目(FRF-MP-18-005;FRF-MP-19-005);颠覆性创新资助项目(19-163-13-ZT-001-008-19)
通讯作者:  guiyingxu@126.com   
作者简介:  董源,2012年6月毕业于北京科技大学,获得工程硕士学位。现为北京科技大学材料科学与工程学院博士研究生,在徐桂英教授的指导下进行研究。目前主要研究领域为GeTe基热电材料。
徐桂英,1983年本科、1995年博士毕业于东北大学,1995—1998年在清华大学做博士后研究。长期从事高性能半导体热电材料与器件前沿的研究工作。目前的主要研究方向包括:1.热电半导体材料和器件;2.热电输运参数测试的研究与仪器开发;3.化学电池关键材料。
引用本文:    
董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
DONG Yuan, XU Guiying. Research and Development of GeTe Thermoelectric Materials. Materials Reports, 2022, 36(3): 20080307-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080307  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20080307
1 Bahl S, Chopra K. Journal of Applied Physics, 1970, 41(5), 2196.
2 Tsu R, Howard W, Esaki L. Physical Review, 1968, 172(3), 779.
3 Zheng Z, Xianli S, Rigui D, et al. Journal of the American Chemical Society,2018, 140, 2673.
4 Kabalkina S S, Vereshchagin L F, Serebryanaya N R. Soviet Journal of Experimental and Theoretical Physics, 1967, 24(5), 917.
5 Leger J M, Redon A M. Journal of Physics Condensed. Matter, 1990, 2, 5655.
6 Onodera A, Sakamoto I, Fujii Y. Physical Review B, 1997, 56(13), 7935.
7 Guo D L, Li C H,Qiu K B, et al. Journal of Alloys and Compounds, 2019, 810, 151838.
8 Yan J J. The structural and electrical transport properties of compressed AlAs, SnSe, and GeTe. Ph.D. Thesis,Jilin University, China, 2007 (in Chinese).
闫杰娟. 高压下AlAs、SnSe及GeTe的结构和电输运性质研究. 博士学位论文, 吉林大学, 2007.
9 Xu L Q, Wang H Q, Zheng J C. Journal of Electronic Materials, 2011, 40(5), 641.
10 Li J, Chen Z W, Zhang X Y, et al. NPG Asia Materials, 2017, 9, e353.
11 Wu D, Zhao L D, Hao S Q, et al. Journal of the American Chemical So-ciety, 2014, 136, 11412.
12 Chen Y, Jaworski C M, Gao Y B, et al. New Journal of Physics, 2014, 16, 013057.
13 Yang W J, Park H J, Kim D S, et al. Scientific Reports, 2019, 9, 12816.
14 Bathaei N, Weng B B, Sigmarsson H. Materials Science in Semiconductor Processing, 2019, 96, 73.
15 Chen Y M, Wang R P, Shen X, et al. Infrared Physics & Technology, 2020, 106, 103280.
16 Huang F Z. Study on preparation and properties of GeTe based thermoelectric materials. Master's Thesis, University of Science and Technology Beijing, China, 2014 (in Chinese).
黄凤珠. GeTe基电材料制备及性能研究, 硕士学位论文.北京科技大学, 2014.
17 Xia Q. Preparation and thermoelectric properties study of rare earth doped GeTe system materials. Master's Thesis, University of Science and Technology Beijing, China, 2014 (in Chinese).
夏翘. 稀土掺杂GeTe基热电材料的制备和热电性能研究, 硕士学位论文.北京科技大学, 2014.
18 Gelbstein Y, Dado B, Ben-Yehuda O, et al. Journal of Electronic Mate-rials, 2010, 39(9), 2049.
19 Gelbstein Y, Dashevsky Z, Dariel M P. Physica Status Solidi-Rapid Research Letters, 2007, 1(6), 232.
20 Hong M, Chen Z G, Lei Y, et al. Advanced Materials, 2018, 30, 1705942.
21 Li J, Zhang X Y, Lin S Q, et al. Chemistry of Materials, 2017, 29, 605.
22 Sittner E R,Siegert K S,Jost P,et al. Physica Status Solidi A, 2013, 210(1), 147.
23 Dong Y, Li H T, Xu G Y. Materials Research Express, 2020, 6(12), 1250h5.
24 Dong J F, Sun F H, Tang H C, et al. Energy & Environmental Science, 2019, 12, 1396.
25 Hazan E, Madar N, Parag M, et al. Journal of Electronic Materials, 2015, 1, 1500228.
26 Wu L H, Li X, Wang S Y, et al. NPG Asia Materials, 2017, 9, e343.
27 Sun H, Lu X, Chi H,et al. Physical Chemistry Chemical Physics, 2014, 16, 15570.
28 Huang F Z, Xu G Y, Zou P. Journal of Electronic Materials, 2015, 44(6), 1651.
29 Lee J K, Oh M W, Kim B S, et al. Electronic Materials Letters, 2014, 10(4), 813.
30 Zhang L L. Fabrication and properties of P-type telluride thermoelectric materials in medium temperature range. Ph.D. Thesis,Tianjin University, China, 2014 (in Chinese).
张丽丽. P型中温碲化物温差电材料制备与性能研究. 博士学位论文, 天津大学, 2014.
31 Krempasky J, Fanciulli M, Pilet N, et al. Journal of Physics and Chemistry of Solids, 2019, 128, 237.
32 Lee H S, Kim B S, Cho C W, et al. Acta Materialia, 2015, 91, 83.
33 Samanta M, Biswas K. Journal of the American Chemical Society, 2017, 139, 9382.
34 Li J Q, Li L F, Song S H, et al. Journal of Alloys and Compounds, 2013, 565, 144.
35 Plachkova S K, Avramova I A. Physica Status Solidi A, 2001, 184(1), 195.
36 Xie L, Chen Y J, Liu R H, et al. Nano Energy, 2020, 68, 104347.
37 Hong M, Wang Y, Feng T L, et al. Journal of the American Chemical Society, 2019, 141(4), 1742.
38 Srinivasan B, Berthebaud D, Mori T. Energies, 2020, 13, 643.
39 Song S C, Lo T C, Aminzare M, et al. Dalton Transactions, 2020, 49, 6135.
40 Li W Q, Liu F R, Zhang Y Z, et al. Journal of Non-Crystalline Solids, 2019, 516, 99.
41 Sharp J W. Applied Physics Letters, 1999, 74(25), 3794.
42 Srinivasan B, Gell A, Gucci F, et al. Inorganic Chemistry Frontiers, 2019, 6, 63.
43 Nshimyimana E, Hao S Q, Su X L, et al. Journal of Materials Chemistry A, 2020, 8, 1193.
44 Gelbstein Y, Ben-Yehuda O, Pinhas E, et al. Journal of Electronic Materials, 2009, 38(7), 1478.
45 Levin E M, Besser M F, Hanus R. Journal of Applied Physics, 2013, 114, 083713.
46 Li S P, Li J Q, Wang Q B, et al. Solid State Sciences, 2011, 13, 399.
47 Feng Y, Li J, Li Y, et al. Journal of Materials Chemistry A, 2020, 8, 11370.
48 Gelbstein Y, Dashevsky Z, Dariel M P. Physica Status Solidi-Rapid Research Letters, 2007, 1(6), 232.
49 Zhang X Y, Li J, Wang X, et al. Journal of the American Chemical Society, 2018, 140, 15883.
50 Tan H,Zhang B,Wang G Y, et al. Journal of Alloys and Compounds,2019, 774, 129.
51 Sankar R, Wong D P, Chi C S, et al. CrystEngComm,2015, 17, 3440.
52 Lou Q, Xu X, Huang Y, et al. ACS Applied Energy Materials, 2020, 3, 2063.
53 Wu D, Feng D, Xu X, et al. Journal of Alloys and Compounds, 2019, 805, 831.
54 Srinivasan B, Boussard-Pledel C, Bureau B. Materials Letters, 2018, 230, 191.
55 Yue L, Cui W L, Zheng S Q, et al. Journal of Materials Research and Technology, 2020, 9(3), 4106.
56 Dong J F, Pei J, Zhuang H L, et al. Journal of Materials Chemistry A, 2019, 7, 27361.
57 Zhu T J, Gao H L, Chen Y, et al. Journal of Materials Chemistry A, 2014, 2, 3251.
58 Chen Y, Jaworski C M, Gao Y B, et al. New Journal of Physics, 2014, 16, 013057.
59 Yang S H,Zhu T J, Sun T, et al. Nanotechnology, 2008, 19, 245707.
60 Levin E M, Bud'ko S L, Schmidt-Rohr K. Advanced Functional Mate-rials, 2012, 22, 2766.
61 Huo F P, Wu R G, Xu G Y, et al. Acta Physica Sinica, 2012, 61(8), 87202 (in Chinese).
霍凤萍, 吴荣归, 徐桂英, 等. 物理学报, 2012, 61(8), 87202.
62 Chen Y, Zhu T J, Yang S H, et al. Journal of Electronic Materials, 2010, 30, 9.
63 Schröder T, Rosenthal T, Giesbrecht N, et al. Journal of Materials Che-mistry A, 2014, 2, 6384.
64 Qiu Y T, Jin Y, Wang D Y, et al. Journal of Materials Chemistry A, 2019, 7, 26393.
65 Zhang L L,Wang W, Ren B G, et al. Journal of Electronic Materials, 2011, 40(5), 1057.
66 Davidow J, Gelbstein Y. Journal of Electronic Materials, 2013, 42(7), 1542.
[1] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[2] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[3] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[4] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[5] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[6] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[7] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[8] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[9] 廖圣俊, 周立娟, 尹凯俐, 王建军, 姜常玺. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114.
[10] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[11] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[12] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[13] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[14] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[15] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed