Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20090054-11    https://doi.org/10.11896/cldb.20090054
  无机非金属及其复合材料 |
金属有机沉积法制备YBCO薄膜的研究进展
李太广1,2,3, 黄大兴1,2,3, 商红静1,2,3, 谢波玮1,2,3, 邹琪1,2,3, 古宏伟1,2,3, 丁发柱1,2,3
1 中国科学院电工研究所,北京 100190
2 中国科学院应用超导重点实验室,北京 100190
3 中国科学院大学,北京 100049
Research Progress of YBCO Thin Films Prepared by Metal Organic Deposition
LI Taiguang1,2,3, HUANG Daxing1,2,3, SHANG Hongjing1,2,3, XIE Bowei1,2,3, ZOU Qi1,2,3, GU Hongwei1,2,3, DING Fazhu1,2,3
1 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 12266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钇钡铜氧(YBCO)涂层导体因具有高临界转变温度(Tc)、高临界电流密度(Jc)和高不可逆场(Hirr)而成为最有应用前途的超导材料。但是,高昂的生产成本限制了YBCO带材的大规模应用。YBCO带材是在薄金属基带上通过外延生长的方法获得并具有良好结晶度和机械强度的超导涂层,而不是采用粉末套管法。金属有机沉积技术(MOD)是一种有效的超导层制备方法,与其他方法相比,它具有不需真空设备、可精确调节薄膜组分以及可实现批量生产等优点。因此,MOD在YBCO带材的生产中具有广阔的应用前景。
传统MOD是以金属三氟乙酸盐(TFA)为原料,在热解过程中,TFA前驱体薄膜的热分解导致薄膜厚度急剧减小,薄膜内应力增加。为了避免薄膜龟裂,原始的热解时间需要10~20 h,漫长的热解时间不符合带材的低成本制备要求。因此,研究人员不断改进MOD工艺,在确保YBCO薄膜超导性能的同时大幅缩短了热处理时间。
随着研究人员对MOD工艺的不断改善,MOD工艺经历了从传统三氟乙酸盐-金属有机沉积法(TFA-MOD)到低氟三氟乙酸盐-金属有机沉积法(LF-MOD),再到无氟-金属有机沉积法(FF-MOD)的发展变化。目前,通过调节FF-MOD结晶过程的温度和氧分压,YBCO薄膜的外延生长速率已经达到100 nm/s。此外,近年来通过缩小第二相纳米颗粒尺寸来提高YBCO薄膜磁通钉扎性能的研究取得了长足进展。研究人员通过两步加热工艺和制备纳米颗粒的胶体溶液,成功将第二相纳米颗粒的尺寸减小到10~15 nm,Jc(77 K,1 T)从0.1 MA/cm2增大到0.45 MA/cm2
本文按照金属有机沉积法制备YBCO薄膜的发展路径综述了TFA-MOD、LF-MOD和FF-MOD的研究进展,并在此基础上对近年来化学溶液法制备长带和提高YBCO薄膜磁通钉扎性能的主要研究进行了综述和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李太广
黄大兴
商红静
谢波玮
邹琪
古宏伟
丁发柱
关键词:  钇钡铜氧  金属有机沉积法  带材  磁通钉扎  第二相纳米颗粒细化    
Abstract: Yttrium barium copper oxide (YBCO) coated conductor is the most promising superconducting material due to its high critical transition temperature (Tc), high critical current density (Jc), and high irreversible field (Hirr). However, the high production cost restricts the large-scale application of YBCO tapes. Instead of imparting the requisite strength and crystallinity to the superconductor by the powder-in-tube method, YBCO tapes uses epitaxial growth on the thin metal tape. Compared with other deposition technologies, metal organic deposition technology (MOD) is one of the effective preparation methods, which does not require expensive vacuum equipment, can precisely regulates the composition of thin film, and can realize mass production. Hence, it is considered to be more promising for the production of YBCO tapes.
However, during the pyrolysis process, the thermal decomposition of TFA precursor films results in a drastic reduction in film thickness and is accompanied by an increase of internal stress in the films. In order to avoid cracking in the film, the original temperature-time profile developed for the calcination required nearly 10—20 h.This long process-time is not compatible with a low-cost manufacturing process. Therefore, researchers continue to improve the MOD process and have achieved fruitful results. While the superconducting properties of YBCO is ensured, the heat treatment time is greatly reduced.
Ameliorated by researchers, the MOD process has been developed from the traditional trifluoroacetate-metal organic deposition method (TFA-MOD) to the low-fluorine trifluoroacetate-metal organic deposition method (LF-MOD) , and then to fluorine-free metal organic deposition method (FF-MOD). At present, by adjusting the temperature and oxygen pressure of the FF-MOD process, the deposition rate of YBCO films has reached 100 nm/s. In addition, there has been great progress on improving the magnetic flux pinning performance of YBCO films by reducing the size of the nanometer second phase in recent years. The researchers have successfully reduced the size of the nanometer second phase to 10—15 nm, through using the two-step heating process or preparing the colloidal solution of nanoparticles. And the Jc of YBCO film increased from 0.1 MA/cm2 to 0.45 MA /cm2 at 77 K and 1 T.
This paper summarizes the research progress of TFA-MOD, LF-MOD and FF-MOD according to the development path of YBCO film prepared by metal organic deposition technology. On this basis, the main research progress in the preparation of strips by chemical solution methods and the improvement of the magnetic flux pinning performance of YBCO thin films in recent years are reviewed and prospected.
Key words:  yttrium barium copper oxide    metal organic deposition    strip    magnetic flux pinning    refinement of second phase nanoparticle
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TM26  
基金资助: 国家自然科学基金项目(U1832131;51721005);北京市自然科学基金委面上项目(3202034)
通讯作者:  dingfazhu@mail.iee.ac.cn20090054-1   
作者简介:  李太广,2018年6月毕业于太原科技大学,获得工学学士学位。现为中国科学院电工研究所硕士研究生,在丁发柱研究员的指导下进行研究。目前主要研究领域为离子辐照提高YBCO薄膜磁通钉扎力。丁发柱,中国科学院电工研究所研究员、博士研究生导师、国科大岗位教授。毕业于北京有色金属研究总院,获得博士学位。2018—2019年美国休斯敦大学访问学者。目前主要从事高温超导材料的制备与应用、可穿戴柔性热电材料的制备和性能、金刚石薄膜的制备等方面的研究。在ACS Appl. Mater. Interfaces、J. Mater. Chem. A、Nanoscale、Supercond. Sci. Technol.、J. Alloy Compd.、Appl. Surf. Sci.等著名期刊上发表50余篇论文。
引用本文:    
李太广, 黄大兴, 商红静, 谢波玮, 邹琪, 古宏伟, 丁发柱. 金属有机沉积法制备YBCO薄膜的研究进展[J]. 材料导报, 2022, 36(2): 20090054-11.
LI Taiguang, HUANG Daxing, SHANG Hongjing, XIE Bowei, ZOU Qi, GU Hongwei, DING Fazhu. Research Progress of YBCO Thin Films Prepared by Metal Organic Deposition. Materials Reports, 2022, 36(2): 20090054-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090054  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20090054
1 Barth C, Komorowski P, Vonlanthen P, et al. Superconductor Science and Technology, 2019, 32(7), 075005.
2 Liu J H, Cheng J S, Wang Q L, et al. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11), 1 (in Chinese).
刘建华, 程军胜, 王秋良, 等. 电工电能新技术, 2017, 36(11), 1.
3 Yan W H, Cai C B, Zhou D F. Physics, 2019, 48(11), 733 (in Chinese).
阎伟华, 蔡传兵, 周迪帆. 物理, 2019, 48(11), 733.
4 Ikeda S, Motoki T, Gondo S, et al. Superconductor Science and Technology, 2019, 32(11), 115003.
5 Pop C, Villarejo B, Pino F, et al. Superconductor Science and Technology, 2019, 32(1), 015004.
6 Gupta A, Jagannathan R, Cooper E I, et al. Applied Physics Letters, 1988, 52(24), 2077.
7 Mclntyre P C, Cima M J, Ng M F. Journal of Applied Physics, 1990, 68(8), 4183.
8 Araki T, Yamagiwa K, Hirabayashi I, et al. Superconductor Science and Technology, 2001, 14(7), L21.
9 Wang S S, Zhang Z L, Li M H, et al. Journal of Sol-Gel Science and Technology, 2018, 86(3), 690.
10 Zhang Y, Zhang G F, Jin L H, et al. Materials Reports, 2010, 24(8),15 (in Chinese).
张云, 张国防, 金利华, 等. 材料导报, 2010, 24(8), 15.
11 Araki T, Hirabayashi I. Superconductor Science and Technology, 2003, 16(11), R71.
12 Jin L H, Li C S, Yu Z M, et al. Applied Surface Science, 2015, 355, 736.
13 Dawley J T, Clem P G, Boyle T J, et al. Physica C Superconductivity, 2004, 402(1-2), 143.
14 Wu W, Feng F, Shi K, et al. Superconductor Science and Technology, 2013, 26(5), 055013.
15 Zalamova K, Romà N, Pomar A, et al. Chemistry of Materials, 2006, 18(25), 5897.
16 Obradors X, Puig T, Pomar A, et al. Superconductor Science and Technology, 2006, 19(3), S13.
17 Tokunaga Y, Honjo T, Izumi T, et al. Cryogenics, 2004, 44(11), 817.
18 Teranishi R, Izumi T, Shiohara Y. Superconductor Science and Technology, 2006, 19(3), S4.
19 Ichikawa H, Nakaoka K, Miura M, et al. Physica C-Superconductivity and Its Applications, 2009, 469(15-20), 1329.
20 Miura M, Ichikawa H, Sutoh Y, et al. Physica C-Superconductivity and Its Applications, 2009, 469(15-20), 1336.
21 Palmer X, Pop C, Eloussifi H, et al. Superconductor Science and Techno-logy, 2016, 29(2), 024002.
22 Bian W, Chen Y, Huang W, et al. Ceramics International, 2017, 43(11), 8433.
23 Jin L H, Bai Y, Li C S, et al. Materials Letters, 2019, 250, 34.
24 Parmigiani F, Chiarello G, Ripamonti N, et al. Physical Review B, 1987, 36(13), 7148.
25 Manabe T, Kondo W, Mizuta S, et al. Journal of Materials Research, 1994, 9(4), 858,
26 Kumagai T, Manabe T, Kondo W, et al. Japanese Journal of Applied Physics, 1990, 29(6), L940.
27 Lei L, Zhao G, Zhao J, et al. Ieee Transactions on Applied Superconducti-vity, 2010, 20(5), 2286.
28 Xu Y, Goyal A, Rutter N A, et al. Journal of Materials Research, 2003, 18(3), 677.
29 Li L, Zhao G, Yan B, et al. Journal of Superconductivity and Novel Magnetism, 2014, 27(1), 23.
30 Matsui H, Tsukada K, Tsuchiya T, et al. Physica C-Superconductivity and Its Applications, 2011, 471(21-22), 960.
31 Matsui H, Tsukada K, Tsuchiya T, et al. Thin Solid Films, 2011, 519(22), 8063.
32 Soler L, Jareño J, Banchewski J, et al. Nature Communications, 2020, 124(28), 15574.
33 Tsuchiya K, Kikuchi A, Terashima A, et al. Ieee Transactions on Applied Superconductivity, 2017, 27(4), 6600205.
34 Rupich M W, Li X, Thieme C, et al. Superconductor Science and Technology, 2010, 23(1), 014015.
35 Fleshler S, Demoranville K, Gannon J, et al. In: 11th European Confe-rence on Applied Superconductivity. Genoa, 2014, pp. 1043.
36 Tsuchiya K, Kikuchi A, Terashima A, et al. Cryogenics, 2017, 85, 1.
37 Cai C B, Chi C X, Li M J, et al. Chinese Science Bulletin, 2019, 64(8), 827 (in Chinese).
蔡传兵, 池长鑫, 李敏娟, 等. 科学通报, 2019, 64(8), 827.
38 Gutierrez J, Llordes A, Gazquez J, et al. Nature Materials, 2007, 6(5), 367.
39 Llordes A, Palau A, Gazquez J, et al. Nature Materials, 2012, 11(4), 329.
40 Fukui J, Kita R, Miura O. Ieee Transactions on Applied Superconductivity, 2020, 30(4), 6600304.
41 Wang Y, Suo H L, Mao L, et al. Journal of Inorganic Materials, 2019, 34(10), 1055.
42 Armenio A A, Piperno L, De Marzi G, et al. Ieee Transactions on Applied Superconductivity, 2019, 29(5), 8002605.
43 Dong Z B, Ding F, Zhang J, et al. Superconductor Science and Technology, 2019, 32(2), L36.
44 Zhang H L, Ding F, Gu H, et al. Journal of Alloys and Compounds, 2016, 664, 5.
45 Motoki T, Ikeda S, Nakamura S, et al. Superconductor Science and Technology, 2018, 31(4), 044004.
46 Horita H, Teranishi R, Yamada K, et al. Superconductor Science and Technology, 2017, 30(2), 025022.
47 Konya K, Ootaguro K, Nishiyama T, et al. Physica C Superconductivity, 2013, 494, 144.
48 Li Z L, Coll M, Mundet B, et al. Scientific Reports, 2019, 9(1), 5828.
49 Obradors X, Puig T, Li Z, et al. Superconductor Science and Technology, 2018, 31(4), 044001.
50 Cayado P, Vallés F, Mundet B, et al. Superconductor Science and Technology, 2015, 28(12), 124007.
[1] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[2] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed