Nanomechanical Analysis of Anisotropy of Single Crystal Copper on Micro-nano Scale
HUANG Jiankang1,2, LIU Yulong1, LIU Guangyin2, YANG Maohong2, FAN Ding1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: The nano-indentation tester was used to conduct micro-nano-scale nano-indentation tests on single crystal copper with different orientations of 〈100〉, 〈110〉, and 〈111〉, and the hardness, reduced elastic modulus and morphology of the unloading process were performed to conduct a comparative analysis. The results show that the hardness value of single crystal copper with different orientations has an obvious size effect in the micro-nano scale. When the indentation depth is less than about 30 nm, the hardness value increases as the indentation depth increases, and then as the indentation depth increases and gradually reduced to about 0.8 GPa. 〈110〉 oriented single crystal copper has the largest reduced modulus of elasticity, followed by 〈111〉 orientation, and 〈100〉 orientation is the smallest; the unloading surfaces of 〈100〉, 〈110〉, and 〈111〉 oriented single crystal copper have obvious stacking phenomenon. Among them, the 〈110〉 oriented single crystal copper has an obvious two-dimensional symmetrical morphology, the 〈100〉 oriented single crystal copper has the largest elastic recovery displacement, and the 〈110〉 elastic recovery displacement is the smallest.
黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
HUANG Jiankang, LIU Yulong, LIU Guangyin, YANG Maohong, FAN Ding. Nanomechanical Analysis of Anisotropy of Single Crystal Copper on Micro-nano Scale. Materials Reports, 2021, 35(24): 24117-24121.
1 Xu X J. Study on friction and wear behavior of monocrystalline silicon under various contact size. Master's Thesis, Southwest Jiaotong University, China, 2012(in Chinese). 徐相杰. 不同接触尺度下单晶硅的摩擦磨损性能研究. 硕士学位论文, 西南交通大学, 2012. 2 Yang X J, Li Y. Materials Review B: Research Papers, 2015,29(8),95(in Chinese). 杨晓京, 李勇. 材料导报:研究篇, 2015, 29(8), 95. 3 Pen H M. Multiscale simulation research on the nanometric cutting process and mechanical properties of microstructure. Ph.D. Thesis, Harbin Institute of Technology, China, 2011(in Chinese). 盆洪民. 微构件纳米切削过程及其力学特性的多尺度模拟研究. 博士学位论文, 哈尔滨工业大学, 2011. 4 Chen L Q, Zhao M H, Zhang T Y. Journal of Mechanical Strength. 2001,23(4), 413(in Chinese). 陈隆庆, 赵明皞, 张统一. 机械强度, 2001,23(4), 413. 5 Li D G, Liang Y C, Bai Q S. Aviation Precision Manufacturing Technology, 2008(2),9(in Chinese). 李德刚, 梁迎春, 白清顺. 航空精密制造技术, 2008(2), 9. 6 Liu Y, Varghese S, Ma J, et al. International Journal of Plasticity, 2008, 24, 1990. 7 Tsuru T, Shibutani Y. Physical Review B, 2007, 75(3), 035415. 8 Yang X J, Liu Y R, Yang X J, et al. Transactions of the Chinese Society for Agricultural Machinery,2014, 45(5), 322(in Chinese). 杨晓京, 刘艳荣, 杨小江,等. 农业机械学报, 2014, 45(5), 322. 9 Xu L Y, Zhang S T, Jing H Y, et al. Journal of Mechanical Enginee-ring,2018,54 (8), 151(in Chinese). 徐连勇, 张舒婷, 荆洪阳, 等. 机械工程学报, 2018, 54(8), 151. 10 Oliver W C, Pharr G M. Materials Research, 1992,7(6), 1564. 11 Nix W D, Gao H. Journal of the Mechanics and Physics of Solids, 1998,46, 411. 12 Bao Y W, Wang W, Zhou Y C. Acta Materialia, 2004, 55(18), 5397.