Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24117-24121    https://doi.org/10.11896/cldb.20090362
  金属与金属基复合材料 |
微纳米尺度单晶铜各向异性纳米力学分析
黄健康1,2, 刘玉龙1, 刘光银2, 杨茂鸿2, 樊丁1,2
1 兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Nanomechanical Analysis of Anisotropy of Single Crystal Copper on Micro-nano Scale
HUANG Jiankang1,2, LIU Yulong1, LIU Guangyin2, YANG Maohong2, FAN Ding1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5439KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用纳米压痕测量仪对〈100〉、〈110〉、〈111〉不同取向的单晶铜进行了微纳米尺度纳米压痕试验,并对其硬度、约化弹性模量及卸载过程形貌等进行了对比分析。结果表明:在微纳米尺度下,不同取向单晶铜硬度值存在明显的尺寸效应,当压入深度小于30 nm时,单晶铜的硬度值随着压入深度的增加而增大,随后随着压入深度的增加而逐渐减小至0.8 GPa左右。〈110〉取向单晶铜的约化弹性模量值最大,〈111〉取向次之,〈100〉取向最小;〈100〉、〈110〉、〈111〉取向单晶铜的卸载表面均出现明显的堆积现象,其中〈110〉取向单晶铜出现明显的二维对称堆积形貌,〈100〉取向单晶铜的弹性恢复位移最大,而〈110〉取向单晶铜的弹性恢复位移最小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄健康
刘玉龙
刘光银
杨茂鸿
樊丁
关键词:  单晶铜  纳米压痕  各向异性  尺寸效应  力学性能    
Abstract: The nano-indentation tester was used to conduct micro-nano-scale nano-indentation tests on single crystal copper with different orientations of 〈100〉, 〈110〉, and 〈111〉, and the hardness, reduced elastic modulus and morphology of the unloading process were performed to conduct a comparative analysis. The results show that the hardness value of single crystal copper with different orientations has an obvious size effect in the micro-nano scale. When the indentation depth is less than about 30 nm, the hardness value increases as the indentation depth increases, and then as the indentation depth increases and gradually reduced to about 0.8 GPa. 〈110〉 oriented single crystal copper has the largest reduced modulus of elasticity, followed by 〈111〉 orientation, and 〈100〉 orientation is the smallest; the unloading surfaces of 〈100〉, 〈110〉, and 〈111〉 oriented single crystal copper have obvious stacking phenomenon. Among them, the 〈110〉 oriented single crystal copper has an obvious two-dimensional symmetrical morphology, the 〈100〉 oriented single crystal copper has the largest elastic recovery displacement, and the 〈110〉 elastic recovery displacement is the smallest.
Key words:  single crystal copper    nano indentation    anisotropic    size effect    mechanical properties
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51865029)
通讯作者:  sr2810@163.com   
作者简介:  黄健康,教授,兰州理工大学硕士研究生导师,2005 年毕业于湘潭大学,2007 年毕业于兰州理工大学,获硕士学位,2010年毕业于兰州理工大学,获博士学位。主要从事异种金属连接、焊接物理与焊接过程检测与控制等方面的研究,发表论文100多篇。
引用本文:    
黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
HUANG Jiankang, LIU Yulong, LIU Guangyin, YANG Maohong, FAN Ding. Nanomechanical Analysis of Anisotropy of Single Crystal Copper on Micro-nano Scale. Materials Reports, 2021, 35(24): 24117-24121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090362  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24117
1 Xu X J. Study on friction and wear behavior of monocrystalline silicon under various contact size. Master's Thesis, Southwest Jiaotong University, China, 2012(in Chinese).
徐相杰. 不同接触尺度下单晶硅的摩擦磨损性能研究. 硕士学位论文, 西南交通大学, 2012.
2 Yang X J, Li Y. Materials Review B: Research Papers, 2015,29(8),95(in Chinese).
杨晓京, 李勇. 材料导报:研究篇, 2015, 29(8), 95.
3 Pen H M. Multiscale simulation research on the nanometric cutting process and mechanical properties of microstructure. Ph.D. Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
盆洪民. 微构件纳米切削过程及其力学特性的多尺度模拟研究. 博士学位论文, 哈尔滨工业大学, 2011.
4 Chen L Q, Zhao M H, Zhang T Y. Journal of Mechanical Strength. 2001,23(4), 413(in Chinese).
陈隆庆, 赵明皞, 张统一. 机械强度, 2001,23(4), 413.
5 Li D G, Liang Y C, Bai Q S. Aviation Precision Manufacturing Technology, 2008(2),9(in Chinese).
李德刚, 梁迎春, 白清顺. 航空精密制造技术, 2008(2), 9.
6 Liu Y, Varghese S, Ma J, et al. International Journal of Plasticity, 2008, 24, 1990.
7 Tsuru T, Shibutani Y. Physical Review B, 2007, 75(3), 035415.
8 Yang X J, Liu Y R, Yang X J, et al. Transactions of the Chinese Society for Agricultural Machinery,2014, 45(5), 322(in Chinese).
杨晓京, 刘艳荣, 杨小江,等. 农业机械学报, 2014, 45(5), 322.
9 Xu L Y, Zhang S T, Jing H Y, et al. Journal of Mechanical Enginee-ring,2018,54 (8), 151(in Chinese).
徐连勇, 张舒婷, 荆洪阳, 等. 机械工程学报, 2018, 54(8), 151.
10 Oliver W C, Pharr G M. Materials Research, 1992,7(6), 1564.
11 Nix W D, Gao H. Journal of the Mechanics and Physics of Solids, 1998,46, 411.
12 Bao Y W, Wang W, Zhou Y C. Acta Materialia, 2004, 55(18), 5397.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed