Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20090201-9    https://doi.org/10.11896/cldb.20090201
  金属与金属基复合材料 |
增材制造镍基高温合金研究进展
袁战伟1, 常逢春1, 马瑞2, 白洁2, 郑俊超2
1 长安大学材料科学与工程学院,西安 710064
2 北京机械动力研究所,北京 100000
Research Progress of Additive Manufacturing of Nickel-based Superalloys
YUAN Zhanwei1, CHANG Fengchun1, MA Rui2, BAI Jie2, ZHENG Junchao2
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
2 Beijing Power Machinery Institute, Beijing 100000, China
下载:  全 文 ( PDF ) ( 11347KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基高温合金具有强度高、抗氧化能力好、蠕变强度和持久强度好以及抗燃气腐蚀能力的特点,被广泛应用于航空航天、汽车通讯、船舶制造等领域。近年来,增材制造技术的进步加速了增材制造镍基高温合金的发展。
激光增材制造对于镍基高温合金的制备具有独特的优势,如生产周期短、成本低以及可进行功能预设等。对于航空发动机及燃气机轮中喷嘴、燃烧室等热段部件以及航天飞行器等复杂零件的成形制造非常有利。目前,相关方面的研究热点主要有激光增材制造过程中凝固组织的变化规律、工艺参数与熔池宏观形态间的关系、残余应力的分析以及缺陷的探究。
本文综述了增材制造技术制备镍基高温合金的研究进展,简要概括了增材制造技术和镍基高温合金的发展概况,总结了用增材制造技术制备的镍基高温合金成形件的显微组织、后处理后组织的变化及其对力学性能的影响,最后阐述了增材制造镍基高温合金成形件存在的缺陷及解决方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁战伟
常逢春
马瑞
白洁
郑俊超
关键词:  增材制造  镍基高温合金  微观组织  后处理  力学性能  内在缺陷    
Abstract: Nickel-based superalloys have the characteristics of high strength, good oxidation resistance, good creep strength and durability, and gas corrosion resistance. They are widely used in aerospace, automotive communications, shipbuilding and other fields. With the advancement of additive manufacturing technology in recent years, the development of additive manufacturing of nickel-based superalloys has been accelerated.
Laser additive manufacturing has unique advantages for the manufacture of nickel-based superalloys, such as short production cycle, low cost, and function presets. It is very advantageous for the forming and manufacturing of complex parts, such as aero engines, gas turbine nozzles, combustion chambers, and aerospace vehicles. At present, the research hotspots in related aspects mainly include the change law of the solidification structure during the laser additive manufacturing process, the relationship between process parameters and the macroscopic shape of the molten pool, the analysis and exploration of residual stress, and the exploration of defects.
This article reviews the research progress of additive manufacturing technology for preparing nickel-based superalloys, and briefly summarizes the development of additive manufacturing technology and nickel-based superalloys. The microstructure of the nickel-based superalloy formed parts manufactured by additive manufacturing, the change of the microstructure after post-treatment, and the influence on the mechanical properties are summarized. Finally, the defects of additive manufacturing parts and their solutions are described.
Key words:  additive manufacturing    nickel-based superalloy    microstructure    post-processing    mechanical properties    inherent defects
发布日期:  2022-02-10
ZTFLH:  TG146.1+5  
基金资助: 国家重点研发计划(2018YFB1105900)
通讯作者:  yuanzhw@chd.edu.cn   
作者简介:  袁战伟,副教授,研究方向为金属基复合材料和增材制造镍基高温合金的宏微观力学性能。
引用本文:    
袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
YUAN Zhanwei, CHANG Fengchun, MA Rui, BAI Jie, ZHENG Junchao. Research Progress of Additive Manufacturing of Nickel-based Superalloys. Materials Reports, 2022, 36(3): 20090201-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090201  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20090201
1 Liu K, Sun H J, Wang J, et al. Advanced Ceramics, 2017, 38(4), 286(in Chinese).
刘凯, 孙华君, 王江, 等. 现代技术陶瓷, 2017, 38(4), 286.
2 Zhou R Y,Shuai M B, Jiang C. Materials Reports A:Review Papers, 2016, 30(1), 67(in Chinese).
周汝垚, 帅茂兵, 蒋驰. 材料导报:综述篇, 2016, 30(1), 67.
3 Liao W J, Hu J. The Magazine on Equipment Machinery, 2015(1), 1 (in Chinese).
廖文俊, 胡捷. 装备机械, 2015(1), 1.
4 Liao W J, Fan E X, Fu C. Materials for Mechanical Engineering, 2018, 42(7), 16 (in Chinese).
廖文俊, 樊恩想, 付超. 机械工程材料, 2018, 42(7), 16.
5 Hu Z N, Zhang Y T, Wang N N. Shandong Coal Science and Technology, 2014(8), 95 (in Chinese).
胡振南, 张玉堂, 王娜娜. 山东煤炭科技, 2014(8), 95.
6 Lan F, Liang Y J, Huang B B. Equipment Manufacturing Technology, 2018(5), 43(in Chinese).
兰芳, 梁艳娟, 黄斌斌. 装备制造技术, 2018(5), 43.
7 Le G M, Li Q, Dong X F, et al. Rare Metal Materials and Engineering, 2017, 46(4), 1162(in Chinese).
乐国敏, 李强, 董鲜峰, 等. 稀有金属材料与工程, 2017, 46(4), 1162.
8 Yao F L. Mechanical Management and Development, 2019(8), 116(in Chinese).
姚福龙. 机械管理开发, 2019(8), 116.
9 Wang D, Qian Z Y, Dou W H, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 49 (in Chinese).
王迪, 钱泽宇, 窦文豪, 等. 航空制造技术, 2018, 61(10), 49.
10 Tang Z J, Guo T M, Fu Y, et al. Metal World, 2014, 1(4), 36 (in Chinese).
唐中杰, 郭铁明, 付迎, 等. 金属世界, 2014, 1(4), 36.
11 Wu K, Zhang J L, Wu B, et al. Journal of Iron & Steel Research, 2017, 29(12), 953.
12 Gan Z, Liu H, Li S, et al. International Journal of Heat and Mass Transfer, 2017, 111, 709.
13 Seidel A, Finaske T, Straubel A, et al. Metallurgical and Materials Transactions: A, 2018, 49(9), 3812.
14 Zhang Y Z, Hou H P, Peng S, et al. Journal of Aeronautical Materials, 2018, 38(6), 50 (in Chinese).
张永志, 侯慧鹏, 彭霜, 等. 航空材料学报, 2018, 38(6), 50.
15 Wu W H, Yang Y Q, Mao G S. Manufacturing Technology & Machine Tool, 2014(4), 46 (in Chinese).
吴伟辉, 杨永强, 毛桂生. 制造技术与机床, 2014(4), 46.
16 Chen M Y, Bai P C, Zhang A F, et al. Materials Reports, 2015, 29(20), 105 (in Chinese).
陈梦洋, 白朴存, 张安峰, 等. 材料导报, 2015, 29(20), 105.
17 Vilaro T, Colin C, Bartout J D, et al. Materials Science and Engineering: A, 2012, 534, 446.
18 Chen X J, Zhao G R, Dong D D, et al. Chinese Journal of Lasers, 2019, 46(12), 1202002(in Chinese).
陈秀娟, 赵国瑞, 董东东, 等. 中国激光, 2019, 46(12), 1202002.
19 Choi J P, Shin G H, Yang S, et al. Powder Technology, 2017, 310, 60.
20 Zuo W, Zhang Q M, Wu W J, et al. Journal of Rocket Propulsion, 2017, 43(1), 55 (in Chinese).
左蔚, 张权明, 吴文杰, 等. 火箭推进, 2017, 43(1), 55.
21 Lin X, Yang H O, Chen J, et al. Acta Metallurgica Sinica, 2006, 42(4), 361(in Chinese).
林鑫, 杨海欧, 陈静, 等. 金属学报, 2006, 42(4), 361.
22 Lv H , Yang Z B, Wang X, et al. Chinese Journal of Lasers, 2018, 45(10), 1002003(in Chinese).
吕豪, 杨志斌, 王鑫, 等. 中国激光, 2018, 45(10), 1002003.
23 Chlebus E, Gruber K, Kuznicka B, et al. Materials Science and Engineering: A, 2015, 639 (15), 647.
24 Brynk T, Pakiela Z,Ludwichowska K. Materials Science and Engineering: A, 2017, 698, 289.
25 Tomus D, Yang T, Rometsch P A, et al. Materials Science and Enginee-ring: A, 2016, 667 (14), 42.
26 Li Y L, Lei L M, Hou H P, et al. Journal of Materials Engineering, 2019, 47(5), 100 (in Chinese).
李雅莉, 雷力明, 侯慧鹏, 等. 材料工程, 2019, 47(5), 100.
27 Deng X Y, Lu S Q, Wang Y C, et al. Special Casting & Nonferrous Alloys, 2017, 37(8), 878 (in Chinese).
邓晓阳, 鲁世强, Wang Yachao, 等. 特种铸造及有色合金, 2017, 37(8), 878.
28 Huang W P, Yu H C, Yin J , et al. Acta Metallurgica Sinica, 2016, 52(9), 1089 (in Chinese).
黄文普, 喻寒琛, 殷杰,等. 金属学报, 2016, 52(9), 1089.
29 Graybill B, Li M, Malawey D, et al. In: ASME 2018 13th International Manufacturing Science and Engineering Conference, 2018, pp. 1.
30 Zhao W W, Lin X, Liu F C, et al. Chinese Journal of Lasers, 2009, 36(12), 3220 (in Chinese).
赵卫卫, 林鑫, 刘奋成,等. 中国激光, 2009, 36(12), 3220.
31 Pang X T, Cheng X, Tian X J, et al. Rare Metal Materials and Enginee-ring, 2019(5), 1615(in Chinese).
庞小通, 程序, 田象军, 等. 稀有金属材料与工程, 2019(5), 1615.
32 Liu K, Wang R, Qi H, et al. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2019, 55(1), 15(in Chinese).
刘凯, 王荣, 祁海, 等. 理化检验:物理分册, 2019, 55(1), 15.
33 Zuo W, Zhang Q M, Lei Y, et al. Journal of Rocket Propulsion, 2017, 43(3), 53 (in Chinese).
左蔚, 张权明, 雷玥, 等. 火箭推进, 2017, 43(3), 53.
34 Yao Y S, Wang J, Chen Q B, et al. Laser & Optoelectronics Progress, 2019, 56(10), 45 (in Chinese).
姚燕生, 汪俊, 陈庆波, 等. 激光与光电子学进展, 2019, 56(10), 45.
35 Du C, Zhang J, Lian Y, et al. Surface Technology, 2019, 48(1), 200 (in Chinese).
杜畅, 张津, 连勇, 等. 表面技术, 2019, 48(1), 200.
36 Moat R J, Pinkerton A J, Li L, et al. Materials Science and Engineering: A, 2011, 528(6), 2288.
37 Parimi L L, Attallah M M, Gebelin J, et al. Superalloys 2012, 2012, 509.
38 Klingbeil N W, Beuth J L, Chin R, et al. International Journal of Mechanical Sciences, 2002, 44(1), 57.
39 Prabhakar P, Sames W J, Dehoff R, et al. Additive Manufacturing, 2015, 7, 83.
40 Bi Z N, Qin H L, Dong Z G, et al. Acta Metallurgica Sinica, 2019, 55(9), 1160 (in Chinese).
毕中南, 秦海龙, 董志国, 等. 金属学报, 2019, 55(9), 1160.
41 Zhang J, Li S, Wei Q S, et al. Chinese Journal of Rare Metals, 2015, 39(11), 961 (in Chinese).
张洁, 李帅, 魏青松, 等. 稀有金属, 2015, 39(11), 961.
42 Vrancken B, Cain V, Knutsen R, et al. Scripta Materialia, 2014, 87(1), 29.
43 Yang Q Y, Wu Y D, Sha F. Materials for Mechanical Engineering, 2016, 40(6), 83 (in Chinese).
杨启云, 吴玉道, 沙菲. 机械工程材料, 2016, 40(6), 83.
44 Ahsan M N, Pinkerton A J, Moat R J, et al. Materials Science and Engineering: A, 2011, 528 (25-26), 7648.
45 Shi Q, Gu D, Xia M, et al. Optics & Laser Technology, 2016, 84, 9.
46 Yuan X B, Wei Q S, Wen S F, et al. Hot Working Technology, 2014, 43(4), 91(in Chinese).
袁学兵, 魏青松, 文世峰, 等. 热加工工艺, 2014, 43(4), 91.
47 Li Y, Qi H, Hou H, et al. Materials and structural engineering (ICMMSE 2017), Atlantis Press, 2017.
48 Carter L N, Martin C, Withers P J, et al. Journal of Alloys and Compounds, 2014, 615, 338.
49 Amato K N, Gaytan S M, Murr L E, et al. Acta Materialia, 2012, 60(5), 2229.
50 Parimi L L, Ravi G A, Clark D, et al. Attallah, Materials Characterization, 2014, 89, 102.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[3] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[4] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[5] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[6] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[7] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[8] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[9] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[12] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[13] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[14] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[15] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed