Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20100016-5    https://doi.org/10.11896/cldb.20100016
  金属与金属基复合材料 |
TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究
杜军, 蒋敏博, 张永恒, 徐思远, 魏正英
西安交通大学机械工程学院,西安 710049
Study on the TIG-droplet Hybrid Additive Manufacturing of 45 Steel/Lead Alloy Bimetallic Structure
DU Jun, JIANG Minbo, ZHANG Yongheng, XU Siyuan, WEI Zhengying
School of Mechanical Engineering,Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 6500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统钢/铅粘接结构在使用或长期贮存过程中存在粘接层局部脱粘、老化或强度退化等问题,严重影响复合结构的完整性和长期稳定性。本工作提出采用钨极惰性气体(Tungsten inert gas, TIG)电弧复合熔滴沉积成形新方法实现45钢/铅合金双金属结构的直接冶金复合增材制造,利用金相显微镜、扫描电镜、能谱仪、硬度实验以及拉伸实验等方法对钢/铅双金属结构成形试样的界面组织特征与力学性能进行分析。结果表明,铅合金沉积层特征尺寸随TIG电弧热输入的改变呈现出明显的非线性依赖特征;45钢/铅合金双金属结构界面未被发现明显孔隙、裂纹等冶金缺陷;界面化合物(Intermetallic compounds, IMCs)层的厚度约为30~70 μm;钢/铅双金属成形试样的界面剪切强度平均值为28.4 MPa,远高于文献报道的强度(4.2 MPa),试件剪切拉伸断裂均发生在铅合金沉积层侧而非结合界面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜军
蒋敏博
张永恒
徐思远
魏正英
关键词:  熔滴沉积成形  钨极惰性气体(TIG)电弧  钢/铅双金属结构  增材制造    
Abstract: The traditional steel/lead bonding structures are based on bonding process, which can lead to serious problems in the application and long-term storage, such as local strap debonding, aging and strength degradation. The above-mentioned problems seriously affect the integrity, long-term stability and environmental adaptability of steel/lead composite structures. This paper puts forward a novel additive manufacturing me-thod to fabricate 45 steel/lead alloy bimetallic structures by direct metallurgical connection, which is a combination of droplet deposition manufacturing and variable-polarity TIG arc process. The microstructure and mechanical properties of the fabricated samples were analyzed by using many experimental means such as OM, SEM, EDS, microhardness test, and so on. The results showed that a nonlinear relationship existed between the heat input of the welding arc and the feature sizes (deposition height and width) of the lead alloy deposited layers. No evidence of cracks and micro voids was found at the bonding interface. The thickness of the interfacial reaction layer is within the range of 30—70 μm. The average interfacial bonding strength of the fabricated sample can reach 28.4 MPa, which is much higher than 4.2 MPa of the report. The fracture location is always on the side of lead alloy deposited layers.
Key words:  droplet deposition manufacturing    tungsten inert gas (TIG) arc    steel/lead bimetallic structure    additive manufacturing
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金资助项目(51775420);民用航天预研项目(D020208)
通讯作者:  jundu2010@mail.xjtu.edu.cn20100016-1   
作者简介:  杜军,西安交通大学机械学院,副研究员。2013年3月毕业于西安交通大学,获机械工程专业博士学位。同年加入西安交通大学工作至今,主要从事双金属结构和陶瓷颗粒增强金属基复合材料的增材制造相关基础理论与应用技术研究。在国内外重要期刊发表文章80余篇,获得国家授权发明专利24项。
引用本文:    
杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
DU Jun, JIANG Minbo, ZHANG Yongheng, XU Siyuan, WEI Zhengying. Study on the TIG-droplet Hybrid Additive Manufacturing of 45 Steel/Lead Alloy Bimetallic Structure. Materials Reports, 2022, 36(2): 20100016-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100016  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20100016
1 Li X, Gao B, Zhu Y, et al. IEEE Sensors Journal, 2018, 18(11), 4679.
2 Liu Y, Yan J, Yuan D, et al. Chemical Engineering Journal, 2013, 218, 81.
3 Sun K H, Li J W, Sun C M, et al. Journal of Applied Acoustics, 2019, 38(1), 93(in Chinese).
孙凯华, 李建文, 孙朝明, 等. 应用声学, 2019, 38(1), 93.
4 Jairaja R, Narayana N G. The Journal of Adhesion, 2021, 97(8), 760.
5 Bandyopadhyay A, Heer B. Materials Science and Engineering R: Reports, 2018, 129, 1.
6 Giselle H L, Eujin P, David H, et al. Additive Manufacturing, 2018, 23, 34.
7 Jonathan E S, Nikhil G, Dirk L. JOM, 2018, 70(3), 272.
8 Khodabakhshi F, Farshidianfar M H, Bakhshivash S, et al. Journal of Manufacturing Processes, 2019, 43, 83.
9 Miao Y G, Zeng Y, Wang T, et al. Transactions of the China Welding Institution, 2015, 36(7), 5(in Chinese).
苗玉刚, 曾阳, 王腾, 等. 焊接学报, 2015, 36(7), 5.
10 Takeyuki A, Hiroyuki T. Precision Engineering, 2016, 45, 387.
11 Tian Y B, Shen J Q, Hu S S, et al. Acta Metallurgica Sinica, 2019, 55(11), 1407(in Chinese).
田银宝, 申俊琦, 胡绳荪, 等. 金属学报, 2019, 55(11), 1407.
12 Khodabakhshi F, Farshidianfar M H, Bakhshivash S, et al. Journal of Manufacturing Processes, 2019, 43, 83.
13 Yang Q, Yuan M K, Li M Z, et al. Materials Science & Technology, 2007, 15(6), 839(in Chinese).
杨强, 袁明康, 李明珍, 等. 材料科学与工艺, 2007, 15(6), 839.
[1] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[2] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[3] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[4] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[5] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[6] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[7] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[8] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[9] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[10] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[11] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[12] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[13] 朱兵钺, 林健, 雷永平, 符寒光, 张永强, 程四华. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 35(14): 14150-14155.
[14] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[15] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed