Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20080258-10    https://doi.org/10.11896/cldb.20080258
  金属与金属基复合材料 |
金属材料多尺度高通量制备研究进展
侯雅青1,2, 苏航2, 张浩2,3, 王畅畅4
1 钢铁研究总院, 北京100081
2 中国钢研科技集团有限公司数字化研发中心,北京 100081
3 重庆安德瑞源科技有限公司,重庆 401329
4 北京钢研新材科技有限公司,北京 100081
Advances in Multi-scale High Throughput Preparation of Metal Materials
HOU Yaqing1,2, SU Hang2, ZHANG Hao2,3, WANG Changchang4
1 Central Iron and Steel Research Institute, Beijing 100081, China
2 Material Digital R & D Center, China Iron and Steel Research Institute Group, Beijing 100081, China
3 Chongqing ADRAYN Technology Co., Ltd, Chongqing 401329, China
4 Beijing MATDAO Technology Co., Ltd, Beijing 100081, China
下载:  全 文 ( PDF ) ( 8764KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料高通量实验是在短时间内完成大量样品的制备与表征,可帮助研究者快速筛选新材料的成分和工艺组合,高效探索材料创新的“基因”,从而促进自主创新迭代能力,是材料基因组工程的关键技术之一。高通量制备技术是高通量实验的基石,其技术发展方向可归纳为两类,第一类是通过并行试验的方法提高制备效率,第二类是在同一样品上实现成分或工艺参数梯度变化。按照制备样品单元的尺度可分为纳微观样品制备方法和宏观样品制备方法,以界面法、薄膜法为代表的纳微观尺度高通量制备技术已被广泛用于各类新材料的成分设计。目前该领域的重要发展方向之一是块体样品的高通量制备技术,用以实现对样品宏观力学性能的直接表征。发展中的宏观尺度样品的高通量制备方法总体上可分为成分高通量制备和工艺高通量制备两大类。本文按照样品尺度归纳了各类高通量制备方法的优缺点及应用特点,特别是高通量方法与激光增材制造技术结合制备块体材料的思路,重点介绍了高通量制备技术在高熵合金、非晶合金和新型结构材料设计开发中的应用案例,分析了高通量制备技术未来发展的重点和趋势,包括均匀块体样品的高效高通量制备、高通量制备与表征的一体化协同以及发展高通量数据采集管理学习的一体化云数据平台,以期为金属新材料成分及工艺设计提供技术思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯雅青
苏航
张浩
王畅畅
关键词:  高通量制备  高通量实验  材料基因工程  激光增材制造  块体金属样品  高熵合金    
Abstract: High throughput experiment of materials is to complete the preparation and characterization of a large number of samples in a short time, which can help researchers quickly screen the composition and process combination of new materials, efficiently explore the genes of mate-rial innovation, and thus promote the iterative ability of independent innovation. It is one of the key technologies of material genome engineering. High throughput preparation is the cornerstone of high throughput experiment. Its technical development direction can be summarized into two ca-tegories. The first is to improve the preparation efficiency through parallel experiments. The second is to achieve gradient changes in composition or process parameters on the same sample. According to the scale of sample preparation unit, it can be divided into nano-micro sample preparation method and macro sample preparation method. Nano-micro scale high throughput preparation technology represented by diffusion multiple method and combinatorial chips method has been widely used in various new materials. At present, one of the important development directions in this field is the high throughput preparation technology of bulk samples to realize the direct characterization of macroscopic mechanical properties. High throughput preparation methods of developing macro-scale samples can be generally divided into two categories: component high throughput preparation and process high throughput preparation. In this paper, latest research progress of high throughput preparation technology is reviewed, especially a combination technical approach of high throughput experiment and additive manufacture. In addition, the application of several high throughput preparation technologies in the design of high entropy alloys, amorphous alloys and novel structural materials are listed. The key points and trends of the future development of high throughput preparation technology are finally analyzed, including the high throughput preparation of homogeneous bulk samples, the integration of high throughput preparation and characterization and the development of an integra-ted cloud data platform for high throughput data acquisition, management and learning. We have confidence in that high throughput experiment will become a crucial tool for material innovation and hope to provide other researchers more technical ideas for the composition and process design of new metal materials by this review.
Key words:  high throughput synthesis    high throughput experiment    material genome engineering    laser additive manufacture    bulk metallic samples    high entropy alloys
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TB31  
基金资助: 国家重点研发计划项目-材料基因工程关键技术与支撑平台(SQ2017YFGX090031);国家自然科学基金(51701044)
通讯作者:  hangsu@vip.sina.com   
作者简介:  侯雅青,高级工程师,2013年1月毕业于北京科技大学,获得工学硕士学位,研究方向为计算材料学。现任职于中国钢研科技集团有限公司数字化研发中心,同时在苏航教授的指导下攻读钢铁研究总院在职博士学位,主要研究领域为材料热动力学计算、高通量实验及金属3D打印。
苏航,教授级高工,博士研究生导师,享受国务院政府特殊津贴。1997年获得中国科学院上海冶金研究所材料物化专业博士学位。现任中国钢研科技集团数字化研发中心主任,中国金属学会计算材料分委会常务理事等。其团队研究涵盖军工舰船、海工装备、石化容器、高速铁路、电力电网等领域的专用材料,同时致力于材料基因组、材料数据库等相关技术的研究。先后主持和参加了30余项国家973、863、支撑计划以及国防军工配套项目的研究,获得冶金科技进步一等奖2项、二等奖1项,全军科技进步三等奖1项;出版专著2部,软件著作权5项,专利十余项,发表论文50余篇。
引用本文:    
侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
HOU Yaqing, SU Hang, ZHANG Hao, WANG Changchang. Advances in Multi-scale High Throughput Preparation of Metal Materials. Materials Reports, 2022, 36(1): 20080258-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080258  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20080258
[1] White A. MRS Bulletin, 2012, 37(8),715.
[2] Guan H D, Li C J, Gao P, et al. Rare Metal Materials and Engineering, 2019, 48(12), 4131(in Chinese).
关洪达, 李才臣, 高鹏, 等.稀有技术工程, 2019, 48(12), 4131.
[3] Xiang Y, Yan Z K, Zhu Y L, et al. Journal of the University of Electronic Science and Technology of China, 2016, 45(4), 634.
[4] Wang H Z, Wang H, Ding H, et al. Science & Technology Reviews, 2015, 33(10), 31(in Chinese).
王海舟, 汪洪, 丁洪, 等. 科技导报, 2015, 33(10), 31.
[5] Zhao J C. Progress in Materials Science, 2006, 51(5), 557.
[6] Liu Y, Padmanabhan J, Cheung B, et al. Scientific Reports, 2016, 6(5), 26950.
[7] Khan M M, Deen K M, Haider W. Journal of Non-Crystalline Solids, 2019, 523(6), 119544.
[8] Nikolic V, Wurster S, Savan A, et al. International Journal of Refractory Metals and Hard Materials, 2017, 69(7), 40.
[9] Yoo Y K, Xue Q, Chu Y S, et al. Intermetallics, 2006, 14(3), 241.
[10] Ludwig A, Zarnetta R, Hamann S, et al. International Journal of Mate-rials Research, 2008, 99(11), 1144.
[11] Mao S S. Journal of Crystal Growth, 2013, 379, 123.
[12] Xiang X D, Wang H, Xiang Y, et al. Science & Technology Review, 2015, 33(10), 64.
[13] Xiang X D, Wang G, Zhang X, et al. Engineering, 2015, 1(2), 225.
[14] Xiang X D, Sun X, Briceno G, et al. Science, 1995,268,1738.
[15] Zhao J C. Science Bulletin, 2014, 59(15), 1652.
[16] Wang X, Zhu L L, Fang J, et al. Science & Technology Review, 2015, 33(10), 79(in Chinese).
王薪, 朱礼龙, 方姣, 等. 科技导报, 2015, 33(10), 79.
[17] Wu D, Zhang L, Liu L, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 1714.
[18] Yoshiki, Takamatsu, Minho, et al. Materials Transactions, 2016, 58(1), 16.
[19] Ener S, Kroder J, Skokov K P, et al. Journal of Alloys and Compounds, 2016, 683, 198.
[20] Goll D, Loeffler R, Hohs D, et al. Scripta Materialia, 2018, 146, 355.
[21] Fayyazi B, Skokov K P, Faske T, et al. Acta Materialia, 2017, 141, 434.
[22] Xu Y, Bu Y, Liu J, et al. Scripta Materialia, 2019, 160, 44.
[23] Koinuma H, Aiyer H N, Matsumoto Y. Science and Technology of Advanced Materials, 2000, 1(1), 1.
[24] Liu Y H. Acta Physica Sinica, 2017, 66(17),73(in Chinese).
柳延辉.物理学报, 2017, 66(17), 73.
[25] Lv Y Z, Qin Z X, Lu X. Materials Reports A:Review Papers, 2017, 31(9), 112(in Chinese).
吕云卓,覃作祥,陆兴.材料导报:综述篇, 2017, 31(9), 112.
[26] Li M X, Zhao S F, Lu Z, et al. Nature, 2019, 569(7754), 99.
[27] Kube S A, Sohn S, Uhl D, et al. Acta Materialia, 2019, 166, 677.
[28] Kube S A, Xing W, Kalidingdi A, et al. Acta Materialia, 2020, 188, 40.
[29] Marshal A, Pradeep K G, Music D, et al. Journal of Alloys and Compounds, 2017, 691, 683.
[30] Bi Y N, Wu X Y, Chen S, et al. Precious Metals, 2019, 40(S1), 62(in Chinese).
毕亚男, 吴先月, 陈松, 等. 贵金属, 2019, 40(S1), 62.
[31] 梁静静, 周亦胄, 王猛, 等. 中国专利, CN201710026426.8, 2018.
[32] Green M L, Choi C L, Hatterick J R, et al. Applied Physics Reviews, 2017, 4(1), 1.
[33] Ocylok S, Weisheit A, Kelbassa I. Physics Procedia, 2010, 5, 359.
[34] Joseph J, Jarvis T, Wu X, et al. Materials Science & Engineering A, 2015, 633, 184.
[35] Wei L, Lei Y, Chen X, et al. Journal of Materials Processing Technology, 2017, 255, 96.
[36] Hasse C, Tang F, Wilms M B, et al. Materials Science and Engineering A, 2017, 688(1), 180.
[37] Chen P, Li S, Zhou Y, et al. Journal of Materials Science and Technology, 2020, 43, 40.
[38] Li C Q, Hou Y Q, Su H, et al. Materials Reports, 2020, 34(S1), 370.
李宸庆, 侯雅青, 苏航, 等. 材料导报, 2020, 34(S1), 370.
[39] Springer H, Raabe D. Acta Materialia, 2012, 60(12), 4950.
[40] Pradeep K G, Tasan C C, Yao M J, et al. Materials Science & Enginee-ring A, 2015, 648, 183.
[41] Wang J. Accelerated composition optimization of hard high entropy alloys by combining high-throughput experiments and machine learning me-thods.Ph.D. Thesis, Shanghai University, China, 2019(in Chinese).
王炯. 高通量实验和机器学习结合加速硬质高熵合金成分设计成分优化. 博士学位论文,上海大学,2019.
[42] Wang J, Xiao B, Liu Y. Materials China, 2020, 39(4), 269(in Chinese).
王炯, 肖斌, 刘轶.中国材料进展, 2020, 39(4), 269.
[43] Chen Y T, Xie M, Wang S, et al. Precious Metals. 2019, 40(S1), 35(in Chinese).
陈永泰, 谢明, 王松, 等. 贵金属, 2019, 40(S1),35.
[44] Si J Y, Song S Y, Liao X H, et al. The Chinese Journal of Nonferrous Metal, 2016, 26(6), 1204(in Chinese).
司家勇, 宋思远, 廖晓航, 等. 中国有色金属学报, 2016, 26(6), 1204.
[45] Wu H, Li J, Liu F, et al. Materials & Design, 2017, 128(8), 176.
[46] 刘剑, 何春, 张中天, 等. 中国专利, CN201510096196.3, 2015.
[47] 王开坤, 杨栋, 胡志强. 中国专利, CN201810009999.4, 2018.
[48] 翟启杰, 张云虎, 孙杰, 等. 中国专利, CN201610284043.6, 2016.
[49] Su Y. A research of the critical technology for high-throughput bulk alloy materials preparation system.Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2017(in Chinese).
苏阳.高通量块体合金材料制备系统关键技术研究. 博士学位论文,电子科技大学,2017.
[50] Knoll H, Ocylok S, Weisheit A, et al. Steel Research International, 2017, 88(8), 1.
[51] Ocylok S, Weisheit A, Kelbassa I. Advanced Materials Research, 2011, 278, 515.
[52] Rui W, Kai Z, Davies C, et al. Journal of Alloys & Compounds, 2017,694,971.
[53] Kunce I, Polanski M, Karczewski K, et al. Journal of Alloys & Compounds, 2015, 648, 751.
[54] Ocelík V, Janssen N, Smith S N, et al. The Journal of the Minerals, Metals & Materials Society, 2016, 68(7), 1810.
[55] Li M, Gazquez J, Borisevich A, et al. Intermetallics, 2018, 95(1), 110.
[56] Polanski M, Kwiatkowska M, Kunce I, et al. International Journal of Hydrogen Energy, 2013, 38(27), 12159.
[57] Moorehead M, Bertsch K, Niezgoda M, et al. Materials & design, 2019, 187,108358.
[58] Tsai P, Flores K M. Acta Materialia, 2016, 120, 426.
[59] Li S, Adkins N J E, Mccain S, et al. Journal of Alloys and Compounds, 2018, 768, 392.
[60] Welk B A, Gibson M A, Fraser H L. The Journal of the Minerals, Metals & Materials Society, 2016, 68(3), 1021.
[61] 冷海燕, 李谦, 王刚, 等. 中国专利, CN201610287346.3, 2016.
[1] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[2] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[3] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[4] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[5] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[6] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[7] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[8] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[9] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[10] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[11] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[12] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[13] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[14] 王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
[15] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed