Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17001-17009    https://doi.org/10.11896/cldb.21040273
  高熵合金 |
高熵合金动态载荷下变形机制的研究进展
王睿鑫, 唐宇, 李顺, 白书欣
国防科技大学空天科学学院,长沙 410073
Research Progress on Deformation Mechanisms Under Dynamic Loading of High-Entropy Alloys
WANG Ruixin, TANG Yu, LI Shun, BAI Shuxin
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 5460KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 因具有一系列特殊的结构和性能,高熵合金在短短十几年间就从一种新型的合金设计理念成为了高性能结构材料的明日之星。近年来,研究者们相继开展了高熵合金的动态力学行为和变形机制的研究,旨在推进高熵合金的实用化进程、夯实高熵合金动态力学行为的理论基础并进一步丰富高熵合金的内涵。
本文综述了高熵合金动态变形机制的研究进展,对高熵合金在动态载荷下的位错运动、孪生变形、应变诱发相变以及绝热剪切效应进行了总结和分析。在此基础上,本文认为高熵合金在动态载荷下的变形机制与其在准静态载荷下的变形机制之间,既有相互关联的相似性,又有值得关注的差异性。具体而言,动态变形由位错运动主导的高熵合金,因受到热激活机制、拖曳机制和位错间强相互作用的影响,而具有显著的应变率效应、应变敏感性和强应变硬化能力。其中,动态载荷下的位错运动会受到晶格畸变、短程有序、第二相等一系列微结构的影响。此外,层错能较低的面心立方型高熵合金的动态变形过程、亚稳高熵合金的动态变形过程以及难熔高熵合金的动态力学行为,还会分别受到孪生变形、应变诱发相变效应以及热效应和变形局域化引发的绝热剪切效应的显著影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王睿鑫
唐宇
李顺
白书欣
关键词:  高熵合金  动态力学行为  动态变形机制  位错  孪生变形  绝热剪切效应  应变率效应    
Abstract: Due to a series of special structures and properties, high-entropy alloys (HEAs) have evolved from a new type of alloy design concept to a rising star of high-performance structural materials in just over ten years. Recently, researchers have successively carried out study on the dynamic mechanical behavior and deformation mechanism of HEAs, aiming to promote the practical application, consolidate the theoretical basis and further enrich the connotation of HEAs.
This review offers a retrospection of the research progress of dynamic deformation mechanisms of HEAs. The dislocation movement, twinning deformation, strain-induced phase transformation and adiabatic shear effect of HEAs under dynamic loading are summarized and analyzed. On this basis, it is found that the deformation mechanisms of the HEAs under dynamic loading and quasi-static loading have both interrelated similarities and noteworthy differences. Specifically, HEAs whose dynamic deformation is dominated by dislocation movement are affected by thermal activation mechanism, drag mechanism and strong interaction between dislocations, and exhibit significant strain rate effects, strain sensitivity, and strong strain hardening ability. The dislocation motion under dynamic loading is affected by a series of microstructures such as lattice distortion, short-range orderings, and second phase. In addition, the dynamic deformation behaviors of face centered cubic HEAs with low stacking fault energy, metastable HEAs and refractory HEAs are subject to twinning deformation, strain induced phase transformation, and thermal effect as well as adiabatic shear effect resulting from localization of deformation respectively.
Key words:  high-entropy alloys    dynamic mechanical behavior    dynamic deformation mechanism    dislocation    twinning deformation    adiabatic shear effect    strain rate effect
                    发布日期:  2021-09-26
ZTFLH:  TB31  
  O77  
基金资助: 国家自然科学基金委项目(11972372;U20A20231)
通讯作者:  tangyu16@nudt.edu.cn; shuxinbai@hotmail.com   
作者简介:  王睿鑫,国防科技大学空天科学学院博士研究生。主要研究领域为高熵合金及其动态力学行为,已以第一作者身份发表SCI论文4篇,获博士研究生国家奖学金2次。
唐宇,国防科技大学空天科学学院副教授、硕士生导师。2016年博士毕业于浙江大学材料学专业。主要从事高熵合金及其应用研究,首次提出并验证了高熵合金含能结构材料的概念,主持国家自然科学基金面上及青年项目、国防科技创新特区重点及一般项目、湖南省自然科学基金面上项目等科研项目6项,在高熵合金领域发表论文20余篇,授权专利4项。
白书欣,国防科技大学空天科学学院教授,博士生导师。军委科技委“特种工程材料技术”主题首席科学家,军委科技委“新型材料”主题专家,军委装备发展部电子支撑材料专家,全国热处理学会理事,湖南省机械工程学会常务理事,湖南省材料与热处理学会理事长,《金属热处理》、《磁性材料及器件》、《热处理技术与装备》等学术杂志编委。主要从事金属基耐高温热结构、含能结构材料和电子信息材料等方向研究。获省部级科技进步一等奖2项、二等奖3项、三等奖2项,入选湖南省新世纪121人才工程,荣立三等功2次,发表论文200余篇,授权专利20余项。
引用本文:    
王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
WANG Ruixin, TANG Yu, LI Shun, BAI Shuxin. Research Progress on Deformation Mechanisms Under Dynamic Loading of High-Entropy Alloys. Materials Reports, 2021, 35(17): 17001-17009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040273  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17001
1 Cantor B, Chang I T H, Knight P,et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
2 Yeh J W, Chen S K, Lin S J,et al. Advanced Engineering Materials, 2004, 6, 299.
3 Miracle D B, Senkov O N.Acta Materialia, 2017, 122, 448.
4 Yeh J W.JOM, 2013, 65, 1759.
5 Chen H, Kauffmann A, Laube S, et al.Metallurgical and Materials Transactions A, 2018, 49, 772.
6 Zhang W R, Liaw P K, Zhang Y, et al.Science China Materials, 2018, 61, 2.
7 Wu Y, Zhang F, Yuan X Y, et al.Journal of Materials Science & Technology, 2021, 62, 214.
8 Lei Z F, Liu X J, Wu Y, et al.Nature, 2018, 563, 546.
9 Antillon E, Woodwar C, Rao S I, et al.Acta Materialia,2020,190,29.
10 Ding Q Q, Zhang Y, Chen X, et al.Nature, 2019, 574, 223.
11 Li X Q, Li W, Irving D L, et al.Acta Materialia, 2020, 189, 174.
12 Yin B L, Curtin W A.Materials Research Letters, 2020, 8, 209.
13 Ma E, Wu X L, et al.Nature Communications, 2019, 10, 2041.
14 Wu S W, Wang G, Wang Q, et al.Acta Materialia, 2019, 165, 444.
15 Guo L Y, He J Y, Lu W J, et al.Materials Characterization, 2021, 172, 110836.
16 Shi Y, Yang B, Xie X,et al. Corrosion Science, 2017, 119, 33.
17 Zou Y, Ma H, Spolenak R.Nature Communications, 2015, 6, 7748.
18 Gludovatz B, Hohenwarter A, Catoor D,et al. Science, 2014, 345, 1153.
19 Senkov O N, Wilks G B, Scott J M, et al.Intermetallics, 2011,19(5),698.
20 Zhang Z R, Zhang H, Tang Y,et al.Materials & Design,2017,133,435.
21 Jiao Z M, Ma S G, Chu M Y, et al.Journal of Materials Engineering & Performance, 2016, 25, 451.
22 Kumar N, Ying Q, Nie X, et al.Materials & Design, 2015, 86, 598.
23 Smith W F, Hashemi J. Foundations of materials science and enginee-ring, McGraw-Hill Inc., USA, 2009.
24 He J Y, Zhu C, Zhou D Q, et al.Intermetallics, 2014, 55, 9.
25 Bu Y Q, Wu Y, Lei Z F, et al. Materials Today, 2021, 46, 28.
26 Ma S G, Jiao Z M, Qiao J W, et al. 2016, 649, 35.
27 Zhang T W,Jiao Z M,Wang Z H,et al.Scripta Materialia,2017,136,15.
28 Meyers M A.Dynamic behavior of materials, John Wiley & Sons, USA, 1994.
29 De Hosson J T, Roos A, Metselaar E D.Philosophical Magazine A, 2001, 81, 1099.
30 Regazzoni G, Kocks U F, Follansbee P S.Acta Metallurgica, 1987, 35, 2865.
31 Yao S L, Pei X Y, Liu Z L,et al. Mechanics of Materials, 2020, 140, 103211.
32 Hu M L, Song W D, Duan D B, et al.International Journal of Mechanical Sciences, 2020, 182, 105738.
33 Dirras G, Couque H, Lilensten L, et al.Materials Characterization, 2016, 111, 106.
34 Tsai S P, Tsai Y T, Chen Y W, et al.Materials Characterization, 2019, 147, 193.
35 Wang B F, Fu A, Huang X X, et al.Journal of Materials Engineering & Performance, 2016, 25(7), 2985.
36 Wang R X, Tang Y, Li S, et al. Journal of Alloys and Compounds, 2020, 825, 154099.
37 Zhang Y, Zuo T T, Tang Z, et al.Progress in Materials Science, 2014, 61, 1.
38 Zhang S, Wang Z, Yang H J, et al.Intermetallics, 2020, 121, 106699.
39 Wang C T, He Y, Guo Z P, et al.Metals and Materials International, 2021, 27, 2310.
40 Gangireddy S, Gwalani B, Liu K, et al.Materials Science and Enginee-ring: A, 2018, 734, 42.
41 Wang L, Qiao J W, Ma S G, et al.Materials Science and Engineering: A, 2018, 727, 208.
42 Tamm A,Aabloo A,Klintenberg M,et al.Acta Materialia,2015,99,307.
43 Ding J, Yu Q, Asta M, et al.Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8919.
44 Zhang R P, Zhao S T, Ding J, et al.Nature, 2020, 581, 283.
45 Zhang R P, Zhao S T, Ophus C,et al. Science Advances, 2019, 5, eaax2799.
46 Chen H Y, Wang Y D, Nie Z H,et al. Nature Materials,2020,19,712.
47 Lei Z F, Wu Y, He J, et al.Science Advances, 2020, 6, eaba7802.
48 Hiratal A, Kangl L J, Fujita T, et al.Science, 2013, 341, 376.
49 Sheng H W, Luo W K, Alamgir F M, et al. Nature, 2006, 439, 419.
50 Zhang T W, Ma S G, Zhao D, et al.International Journal of Plasticity, 2020, 124, 226.
51 Hansen N.Scripta Materialia, 2004, 51, 801.
52 Liu W H, Wu Y, He J Y, et al.Scripta Materialia, 2013, 68, 526.
53 Kang B, Lee J, Ryu H J, et al.Journal of Alloys and Compounds, 2018, 767, 1012.
54 Chen S Y, Tseng K K, Tong Y, et al.Journal of Alloys and Compounds, 2019, 795, 19.
55 He J Y, Wang Q, Zhang H S, et al.Science Bulletin, 2018, 63, 362.
56 Gangireddy S, Liu K M, Gwalani B, et al.Materials Science and Engineering A, 2018, 727, 148.
57 Wang X T, Zhao Y K, Zhou J L, et al.Materials Transactions, 2019,60, 929.
58 Lu Y P, Dong Y, Guo S, et al.Scientific Reports, 2014, 4, 6200.
59 Li Z M, Pradeep K G, Deng Y, et al.Nature, 2016, 534, 227.
60 Liang Y J, Wang L J, Wen Y R, et al.Nature Communication, 2018, 9, 4063.
61 Cao C M, Tong W, Bukhari S H,et al.Materials Science & Engineering A, 2019, 759, 648.
62 Gwalani B, Gangireddy S, Zheng Y F, et al.Scientific Reports, 2019, 9, 6371.
63 Wang B F, Wang C, Liu B, et al.Entropy, 2019, 21(12), 1154.
64 Gwalani B, Torgerson T, Dasari S, et al.Journal of Alloys and Compounds, 2021, 853, 157126.
65 Christian J W, Mahajan S.Progress in Materials Science, 1995, 39, 1.
66 Meyers M A, Vöhringer O, Lubarda V A.Acta Materialia, 2001, 49, 4025.
67 Koike J, Kobayashi T, Mukai T, et al.Acta Materialia,2003,51,2055.
68 Chen Z H, Yang C H, Huang C Q, et al.Materials Review, 2006, 20(8),107(in Chinese).
陈振华,杨春花,黄长清, 等.材料导报, 2006, 20(8), 107.
69 Ming K S, Bi X F, Wang J.International Journal of Plasticity, 2019, 113, 255.
70 Laplanche G, Kostka A, Reinhart C, et al.Acta Materialia,2017,128,292.
71 Zhang Z J, Mao M M, Wang J W, et al.Nature Communication, 2015, 6, 10143.
72 Jo Y H, Kim D G, Jo M C, et al.Journal of Alloys and Compounds, 2019, 785, 1056.
73 Chung T F, Chen P J, Tai C L, et al.Materials Characterization, 2020, 170, 110667.
74 Song H J, Kim D G, Kim D W, et al.Scientific Reports, 2019, 9, 6163.
75 Sonkusare R, Jain R, Biswas K, et al.Journal of Alloys and Compounds, 2020, 823, 153763.
76 Ma Y, Yuan F P, Yang M X, et al.Acta Materialia, 2018, 148, 407.
77 Park J M, Moon J, Bae J W, et al.Materials Science and Engineering: A, 2018, 719, 155.
78 Foley D L, Huang S H, Anber E, et al.Acta Materialia, 2020, 200, 1.
79 Soleimani M, Kalhor A, Mirzadeh H.Materials Science and Engineering: A, 2020, 795, 140023.
80 Zackay V F, Parker E R, Fahr D, et al.Transactions of Applied Structures Mechanics, 1967, 60(2), 252.
81 Lester B T, Baxevanis T, Chemisky Y, et al.Acta Mechanica, 2015, 226, 3907.
82 Suh D W, Kim S J.Scripta Materialia, 2017, 126, 63.
83 Zahiri A H, Ombogo J, Ma T F, et al.Journal of Applied Physics, 2021, 129, 015105.
84 Huang H L, Wu Y, He J, et al.Advanced Materials, 2017, 29, 11701678.
85 Zou D L, Luan B F, Liu Q, et al.Journal of Nuclear Materials, 2013, 437(1-3), 380.
86 Zhan H, Zeng W, Wang G, et al.Materials Characterization, 2015, 102, 103.
87 Yu X M, Feng L C, Li G A, et al. Materials Science and Engineering: A, 2015, 639, 374.
88 Li N, Wang Y D, Peng R L, et al.Acta Materialia, 2011, 59(16), 6369.
89 Baik S, Gupta R K, Kumar K S, et al.Acta Materialia, 2021, 205, 116568.
90 Xin Y P, Zhu Z S, Wang X N, et al.Rare Metal Materials and Enginee-ring, 2020, 49(10), 3361.
91 Magagnosc D J, Lloyd J T, Meredith C S, et al.International Journal of Plasticity, 2021, 141, 102992.
92 Wang R X. Microstructure Evolution and Energetic Structural Properties of NbZrTiTa High-Entropy Alloy. Master’s thesis, National University of Defense Technology, China, 2018(in Chinese).
王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究. 硕士学位论文, 国防科技大学, 2018.
93 George E P, Curtinc W A, Tasand C C.Acta Materialia,2020,188,435.
94 Senkov O N, Miracle D B, Chaput K J.Journal of Materials Research, 2018, 33, 3092.
95 Gwalani B, Wang T H, Jagetia A, et al.Entropy, 2020, 22, 431.
96 Yang S J, Yang Y, Yang Z Y, et al. 2020, 51, 1771.
97 Liu X F,Tian Z L,Zhang X F,et al.Acta Materialia,2020,186,257.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[4] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[5] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[6] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[7] 王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
[8] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[9] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[10] 文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
[11] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[12] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[13] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[14] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[15] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed