Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17010-17018    https://doi.org/10.11896/cldb.21020106
  高熵合金 |
AlCoCrFeNi系高熵合金的强化方法研究
李洪超1, 王军1,2, 袁睿豪1, 王毅1, 寇宏超1, 李金山1
1 西北工业大学凝固技术国家重点实验室,西安 710072
2 西北工业大学重庆科创中心,重庆 401135
Study on Strengthening Methods of AlCoCrFeNi High-Entropy Alloys
LI Hongchao1, WANG Jun1,2, YUAN Ruihao1, WANG Yi1, KOU Hongchao1, LI Jinshan1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
2 Innovation Center, NPU Chongqing, Chongqing 401135, China
下载:  全 文 ( PDF ) ( 5803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金又称多主元合金,相比以一种或两种元素为主的传统合金,高熵合金多主元合金设计理念使其具有独特的成分和结构特征,并展示了一系列优异的力学性能。尤其是近几年,拥有高强度、高延性的高熵合金纷纷涌现,这对高熵合金的工程化应用具有重要意义。合金的力学性能与其强化方法息息相关,如细晶强化、共格第二相强化、非共格第二相强化、异质结构强化等强化机制都在不同程度上促进了高熵合金力学性能的提升,因此了解高熵合金的强化方法和机制对于提高高熵合金的力学性能、探索新的高强高韧高熵合金意义重大。AlCoCrFeNi系高熵合金是目前研究最多的高熵合金体系之一,而且该体系高熵合金还可以通过成分调节和热机械处理工艺产生不同的组织结构,进而引入不同的强化机制,合金的力学性能可以在大范围内进行调控,是研究高熵合金强化方法的理想材料。
基于此,本文以AlCoCrFeNi合金体系为对象,回顾了近几年高熵合金的强化方法,包括细晶强化、共格第二相强化、非共格第二相强化和异质结构强化,进一步阐述了成分和组织调控对高熵合金强化方法和力学性能的影响。不仅如此,本文还通过总结复合强化机制,发现必须借助多种强化机制才能使合金达到更高的强度,最后对高熵合金的强化方法研究进行了简单的总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洪超
王军
袁睿豪
王毅
寇宏超
李金山
关键词:  高熵合金  强化方法  力学性能  复合强化    
Abstract: High-entropy alloys (HEAs) is also called multi-principal element alloys. Compared with traditional alloys with one or two elements as the principal constituents, the multiple constituent elements design concept of HEAs grants them the unique constituent, phase structure and a series of excellent mechanical properties. Especially in recent years, there are a lot of HEAs with high strength and ductility, which is of great significance to their engineering application. The excellent mechanical performance is closely related to the strengthening mechanism of the alloys, such as grain-boundary strengthening, coherent second phase strengthening and heterogeneous structure strengthening mechanism, which all promote the improvement of the performance of HEAs in various degrees. Therefore, it is crucial to understand the strengthening mechanism of the HEAs in order to improve the mechanical properties of the HEAs and explore new high-strength and high-ductility HEAs. AlCoCrFeNi HEAs is currently one of the most studied HEAs, which can produce different structure through composition adjustment and different thermo-mechanical treatment process, thus inducing different strengthening mechanism. The mechanical properties of AlCoCrFeNi HEAs can be adjusted in a wide range, making it an ideal material to study the strengthening mechanism of HEAs. Based on this, this article focuses on the subject of the strengthening mechanism of AlCoCrFeNi HEAs.
In this article, the strengthening mechanism of HEAs in recent years are reviewed, including grain-boundary strengthening, coherent second phase strengthening, incoherent second phase strengthening and heterogeneous structure strengthening. The composition and structure control for HEAs strengthening mechanism and mechanical properties is further expounded. In addition, this paper proposes that the single strengthening mechanism cannot greatly improve the strength of the alloy. By summarizing the multiple strengthening mechanism, it is proposed that the higher strength can be achieved by combining multiple strengthening mechanisms. At last, the future perspective of strengthening mechanism in HEAs is also discussed.
Key words:  high-entropy alloys    strengthening mechanism    mechanical property    multiple strengthening
                    发布日期:  2021-09-26
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51774240);重庆市自然科学基金(cstc2020jcyj-msxmX0976);陕西省创新能力支撑计划(2020KJXX-073);中央高校基础研究经费
通讯作者:  nwpuwj@nwpu.edu.cn; ljsh@nwpu.edu.cn   
作者简介:  李洪超,2015年6月毕业于西北工业大学,获得工学学士学位。现为西北工业大学材料学院博士研究生,在王军教授的指导下进行研究。目前主要研究领域为热机械处理对高熵合金的组织和力学性能调控。
王军,博士,西北工业大学材料学院/凝固技术国家重点实验室教授、博士生导师,陕西省青年科技新星,《中国材料进展》《China Foundry》《特种铸造及有色合金》等期刊青年编委。主要从事高熵合金及凝固科学与技术等研究工作,以第一或通讯作者发表学术论文70余篇,授权发明专利26项。
李金山,博士,教授,博导,西北工业大学材料学院院长,凝固技术国家重点实验室主任,国家万人计划领军人才,担任中国材料研究学会凝固科学与技术分会理事长,中国机械工程学会铸造分会副理事长,《中国有色金属学报》《金属学报》《中国材料进展》等期刊编委。主要从事先进金属结构材料及其精确热成形技术研究工作,已发表论文300余篇,授权发明专利50余项。
引用本文:    
李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
LI Hongchao, WANG Jun, YUAN Ruihao, WANG Yi, KOU Hongchao, LI Jinshan. Study on Strengthening Methods of AlCoCrFeNi High-Entropy Alloys. Materials Reports, 2021, 35(17): 17010-17018.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020106  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17010
1 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, A375-377, 213.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 99.
3 Jin K, Lu C, Dou Y, et al. Materials Reports A:Review Papers, 2020, 34(9), 22(in Chinese).
靳柯, 卢晨阳, 豆艳坤, 等. 材料导报:综述篇, 2020, 34(9), 22.
4 Lu Z, Lei Z, Huang H, et al. Acta Metallurgica Sinica, 2018, 54(11), 85(in Chinese).
吕昭平, 雷智锋, 黄海龙, 等. 金属学报, 2018, 54(11), 85.
5 Li T, Lu Y, Cao Z, et al. Acta Metallurgica Sinica, 2021, 57(1), 44(in Chinese).
李天昕, 卢一平, 曹志强, 等. 金属学报, 2021, 57(1), 44.
6 Gludovatz B, Hohenwarter A, Thurston K V, et al. Nature Communications, 2016, 7, 10602.
7 Yao H, Lu Y, Cao Z, et al. Materials Reports A:Review Papers, 2020, 34(9), 45(in Chinese).
姚宏伟, 卢一平, 曹志强, 等. 材料导报:综述篇,2020,34(9),45.
8 Gludovatz B, Hohenwarter A, Catoor D, et al. Science,2014,345,1153.
9 Deng Y, Tasan C C, Pradeep K G, et al. Acta Materialia,2015,94,124.
10 Munitz A, Salhov S, Hayun S, et al. Journal of Alloys and Compounds, 2016, 683, 221.
11 Schneider M, George E P, Manescau T J, et al. International Journal of Plasticity, 2020, 124, 155.
12 Gwalani B, Choudhuri D, Liu K, et al. Materials Science and Enginee-ring A, 2020, A771, 138620.
13 Zhao Y Y, Chen H W, Lu Z P, et al. Acta Materialia, 2018, 147, 184.
14 Zhao Y L, Yang T, Tong Y, et al. Acta Materialia, 2017, 138, 72.
15 Zhao Y L, Yang T, Li Y R, et al. Acta Materialia, 2020, 188, 517.
16 Yang H, Li J, Guo T, et al. Metals and Materials International, 2019, 25, 1145.
17 Chen R, Qin G, Zheng H, et al. Acta Materialia, 2018, 144, 129.
18 Ma Y, Wang Q, Jiang B B, et al. Acta Materialia, 2018, 147, 213.
19 Jin X, Bi J, Zhang L, et al. Journal of Alloys and Compounds, 2019, 770, 655.
20 Choudhuri D, Gwalani B, Gorsse S, et al. Acta Materialia, 2019, 165, 420.
21 Slone C E, Miao J, George E P, et al. Acta Materialia, 2019, 165, 496.
22 Chen G, Qiao J W, Jiao Z M, et al. Scripta Materialia, 2019, 167, 95.
23 Miracle D B, Senkov O N A. Acta Materialia, 2017, 122, 448.
24 Kao Y F, Chen T J, Chen S K, et al. Journal of Alloys and Compounds, 2009, 488, 57.
25 Gwalani B, Gorsse S, Choudhuri D, et al. Scripta Materialia, 2019, 162, 18.
26 Yang J, Qiao J W, Ma S G, et al. Journal of Alloys and Compounds, 2019, 795, 269.
27 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
28 Dong Y, Gao X, Lu Y, et al. Materials Letters, 2016, 169, 62.
29 Li D, Zhang Y. Intermetallics, 2016, 70, 24.
30 Yang H, Li J, Pan X, et al. Journal of Materials Science & Technology, 2020, 72, 1.
31 Guo T, Li J, Wang J, et al. Materials Science and Engineering A, 2018, A729, 141.
32 Gwalani B, Soni V, Choudhuri D, et al. Scripta Materialia,2016,123,130.
33 Gwalani B, Gangireddy S, Zheng Y, et al. Scientific Reports, 2019, 9, 6371.
34 Sourav A, Yebaji S, Thangaraju S, et al. Materials Science and Enginee-ring A, 2020, A793, 139877.
35 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109, 103505.
36 Qin G, Xue W, Fan C, et al. Materials Science and Engineering A, 2018, A710, 200.
37 Kang M, Lim K R, Won J W, et al. Journal of Alloys and Compounds, 2018, 769, 808.
38 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4, 174.
39 Gao X, Lu Y, Zhang B, et al. Acta Materialia, 2017, 141, 59.
40 Zhang Y, Wang X, Li J, et al. Materials Science and Engineering A, 2018, A724, 148.
41 Bhattacharjee T, Wani I S, Sheikh S, et al. Scientific Reports, 2018, 8, 3276.
42 Shi P, Ren W, Zheng T, et al. Nature Communications, 2019, 10, 489.
43 Wani I S, Bhattacharjee T, Sheikh S, et al. Intermetallics,2017,84,42.
44 Jin X, Zhou Y, Zhang L, et al. Materials Letters, 2018, 216, 144.
45 Chen C, Pang S, Cheng Y, et al. Journal of Alloys and Compounds, 2016, 659, 279.
46 Liu D, Yu P, Li G, et al. Materials Science and Engineering A, 2018, A724, 283.
47 Wu S W, Wang G, Yi J, et al. Materials Research Letters,2016,5,276.
48 Yoshida S, Bhattacharjee T, Bai Y, et al. Scripta Materialia, 2017, 134, 33.
49 He Y, Yang H, Zhao C, et al. Journal of Alloys and Compounds, 2020, 830, 154645.
50 Otto F, Dlouhý A, Somsen C, et al. Acta Materialia, 2013, 61, 5743.
51 Yang H X, Li J S, Guo T, et al. Rare Metals, 2020, 39, 156.
52 Hou J, Shi X, Qiao J, et al. Materials & Design, 2019, 180, 107910.
53 Wang J, Niu S, Guo T, et al. Journal of Alloys and Compounds, 2017, 710, 144.
54 Wang J, Yang H, Guo T, et al. Entropy, 2018, 20, 917.
55 Niu S Z, Kou H C, Wang J, et al. Rare Metals, 2017, DOI:10.1007/s12598-016-0860-y.
56 Zhao C, Li J, He Y, et al. Journal of Alloys and Compounds, 2020, 820, 153407.
57 Zhao C, Li J, Liu Y, et al. Journal of Materials Science & Technology, 2021, 73, 83.
58 Niu S, Kou H, Guo T, et al. Materials Science and Engineering: A, 2016, 671, 82.
59 Gwalani B, Soni V, Lee M, et al. Materials & Design, 2017, 121, 254.
60 Chen D, He F, Han B, et al. Intermetallics, 2019, 110, 106476.
61 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
62 He J Y, Wang H, Wu Y, et al. Intermetallics, 2016, 79, 41.
63 Lee D H, Park J M, Yang G, et al. Scripta Materialia, 2019, 163, 24.
64 Li C, Ma Y, Hao J, et al. Materials Science and Engineering A, 2018, A737, 286.
65 Liang Y J, Wang L, Wen Y, et al. Nature Communications, 2018, 9, 4063.
66 Liu W H, Yang T, Liu C T. Materials Chemistry and Physics, 2018, 210, 2.
67 Yang T, Zhao Y L, Luan J H, et al. Scripta Materialia, 2019, 164, 30.
68 Zhang L, Zhou Y, Jin X, et al. Materials Science and Engineering A, 2018, A732, 186.
69 Zheng T, Hu X, He F, et al. Journal of Materials Science & Technology, 2020, 69, 156.
70 Tong Y, Chen D, Han B, et al. Acta Materialia, 2019, 165, 228.
71 Sathiyamoorthi P, Kim H S. Progress in Materials Science,DOI:10.1016/j.pmatsci.2020.100709.
72 Shukla S, Choudhuri D, Wang T, et al. Materials Research Letters, 2018, 6, 676.
73 Zhu Y, Wu X. Materials Research Letters, 2019, 7, 393.
74 Wu S W, Wang G, Wang Q, et al. Acta Materialia, 2019, 165, 444.
75 Du X H, Li W P, Chang H T, et al. Nature Communications, 2020, 11, 2390.
76 Fu Z, Jiang L, Wardini J L, et al. Science Advances, DOI:10.1126/sciadv.aat8712.
77 Lu Y, Gao X, Jiang L, et al. Acta Materialia, 2017, 124, 143.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[6] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[7] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[8] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[9] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[10] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[11] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[12] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[13] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[14] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[15] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed