Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17081-17089    https://doi.org/10.11896/cldb.20070084
  高熵合金 |
高熵合金固溶强化问题的研究进展
文成1,2, 莫湾湾1, 田玉琬1,2, 王贵3, 胡杰珍3
1 广东海洋大学机械与动力工程学院,湛江 524088
2 北京科技大学新材料技术研究院,北京 100083
3 广东省海洋装备及制造工程技术研究中心,湛江 524088
Research Progress on Solid Solution Strengthening of High Entropy Alloys
WEN Cheng1,2, MO Wanwan1, TIAN Yuwan1,2, WANG Gui3, HU Jiezhen3
1 School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3 Guangdong Provincial Ocean Equipment and Manufacturing Engineering Technology Research Center, Zhanjiang 524088, China
下载:  全 文 ( PDF ) ( 3035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 区别于传统的合金材料,高熵合金没有溶质溶剂概念的划分。多主元成分配比造成的晶格畸变、尺寸错配等使高熵合金表现出显著的固溶强化效应,因而可获得优异的力学强度。然而,经典合金固溶强化理论中关于稀释溶质的假设并不适用于高熵合金,相关强化模型无法有效预测其力学强度,这阻碍了高熵合金成分的理性设计及相关应用。近年来,基于高熵合金的成分特点,人们不断探究其固溶强化的起源,尝试建立有效的预测模型,实现合金强度的准确预测,进而指导面向性能需求的高熵合金快速设计,最终推动高熵合金的科学研究和工程应用。本文总结了高熵合金固溶强化问题的研究进展,介绍了三种典型的固溶强化模型,对比分析了各模型的建模思路、预测效果、存在问题及在高熵合金设计中的具体应用,最后对高熵合金固溶强化机制的探索、强化模型的发展及应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文成
莫湾湾
田玉琬
王贵
胡杰珍
关键词:  高熵合金  固溶强化  屈服强度  硬度  性能预测  合金设计    
Abstract: There is no identification of solute and solvent in high entropy alloys, compared to traditional alloy materials. The lattice distortion and size mismatch caused by the special composition of high entropy alloys make it possess significant solid solution strengthening effect, and hence lead to excellent mechanical strength. However, classical strengthening theories based on diluted solute assumption cannot be used to describe the strengthening effect of high entropy alloys, so it is hard to accurately predict the strength of high entropy alloys, which hinders the rational design and application research of such alloys. In recent years, some researchers explore the solid solution strengthening origin and try to develop reliable strengthening models to realize the high-throughput prediction of strength/hardness, and ultimately guide the rapid composition design for performance requirement, to promote the scientific research and engineering application of high entropy alloys. In this review, we summarized the research progress on solid solution strengthening of high entropy alloys, introduced three typical strengthening models at present, compared and analyzed the model construction, prediction effect, remaining problems and the specific application in the design of high entropy alloys. Finally, we prospected the exploration of solid solution strengthening mechanism of high entropy alloys, the development and application of strengthening model.
Key words:  high entropy alloys    solid solution strengthening    yield strength    hardness    property prediction    alloy design
                    发布日期:  2021-09-26
ZTFLH:  TG135  
基金资助: 国家自然科学基金项目(51801033); 广东海洋大学创新创业训练计划项目(CXXL20200210)
通讯作者:  tianyuwan90@163.com   
作者简介:  文成,2014年1月毕业于北京科技大学,获得材料科学与工程硕士学位,现为广东海洋大学讲师。目前主要研究领域为机器学习指导下的理性材料设计、高熵合金的强化机制及腐蚀行为。近五年发表论文10余篇,包括Acta MaterialiaMarine StructuresJournal of Applied Electrochemistrynpj Computational Materials等,授权专利3项。
田玉琬,博士,广东海洋大学讲师。主要研究方向为海工装备及材料的腐蚀与防护、高强耐蚀金属材料的研发等。近五年发表SCI论文10余篇,包括Cement and Concrete CompositesMaterials LettersConstruction and Building Materials等,授权专利3项。
引用本文:    
文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
WEN Cheng, MO Wanwan, TIAN Yuwan, WANG Gui, HU Jiezhen. Research Progress on Solid Solution Strengthening of High Entropy Alloys. Materials Reports, 2021, 35(17): 17081-17089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070084  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17081
1 Huang S C, Zhang Y S, Zhang X L, et al. Computational Materials Science, 2017, 127, 60.
2 Abdelaziz M H, Paradis M, Samuel A, et al. Advances in Materials Science and Engineering, 2017, 2, 1.
3 Schinhammer M, Hanzi A C, Loffler J F, et al. Acta Biomaterialia, 2010, 6, 1705.
4 Long H, Mao S, Liu Y, et al. Journal of Alloys and Compound, 2018, 743, 203.
5 Hayama A O F, Andrade P N, Cremasco A, et al. Materials & Design, 2014, 55, 1006.
6 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
7 Yeh J W. Hua Kang Journal of Engineering, 2011(27), 1(in Chinese).
叶均蔚. 华冈工程学报, 2011(27), 1.
8 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18, 1758.
9 Yoshida S, Bhattacharjee T, Bai Y, et al. Script Materials, 2017,134,33.
10 Yong Z, Zuo T T, Zhi T, et al. Progress in Materials Science,2014,61,1.
11 Miracle D B, Senkov O N. Acta Materialia, 2016, 122, 448.
12 Guo S. Materials Science and Technology, 2015, 31(10), 1223.
13 Ma S G, Zhang S F, Qiao J W, et al. Intermetallics, 2014, 54, 104.
14 Edalati P, Floriano R, Tang Y, et al. Materials Science and Engineering C, 2020, 112, 110908.
15 Schuh B, Mendez-Martin F, Vlker B, et al. Acta Materialia, 2015, 96, 258.
16 Qiu Y, Gibson M A, Fraser H L, et al. Materials Science and Technology, 2015, 31(10), 1235.
17 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
18 Miracle D B, Senkov O N. Acta Materialia, 2016, 122, 448.
19 Shen L H, Yang X F. Materials Reports A: Review Papers,2020,34(6), 11171(in Chinese).
沈利华, 杨晓芳. 材料导报:综述篇, 2020, 34(6), 11171.
20 Yeh J W, Chen S K, Gan J Y, et al. Metallurgical and Materials Transa-ctions A, 2004, 35, 2533.
21 Li C, Xue Y, Hua M, et al. Materials & Design, 2016, 90, 601.
22 Mishra R S, Kumar N, Komarasamy M. Materials Science and Technology, 2015, 31, 1259.
23 Song H Q, Tian F Y, Hu Q M, et al. Physical Review Materials, 2017, 1, 023404.
24 He Q F, Yang Y. Frontiers in Materials, 2018, 5, 42.
25 Fleischer R L. Scripta Metallurgica, 1987, 21(8), 1083.
26 Labusch R. Physica Status Solidi, 1970, 41(2), 659.
27 Gypen L A, Deruyttere A. Journal of Materials Science, 1977, 12(5), 1034.
28 Riddhagni B R. Journal of Applied Physics, 1968, 39(9), 4144.
29 Larosa C R, Shih M, Varvenne C, et al. Materials Characterization, 2019, 151, 310.
30 Walbrühl M, Linder D, Agren J, et al. Materials Science and Enginee-ring, A, 2017, 700, 301.
31 Lubarda V A. Mechanics of Materials, 2003, 35, 53.
32 Senkov O N, Scott J M, Senkova S V, et al. Journal of Alloys and Compounds, 2011, 509(20), 6043.
33 Yao H W, Qiao J W, Hawk J A, et al. Journal of Alloys and Compounds, 2016, 696, 1139.
34 Wang S P, Xu J. Intermetallics, 2018, 95, 59.
35 Wang Z P, Fang Q H, Li J, et al. Journal of Materials Science & Techno-logy, 2018, 34(2), 349.
36 Rao Z Y, Wang X, Zhu J, et al. Intermetallics, 2016, 77, 23.
37 Moreen H A, Taggart R, Polonis D H. Metallurgical Transactions, 1971, 2(1), 265.
38 Toda-Caraballo I. Acta Materialia, 2015, 85, 14.
39 Pickering E, Jones N G. International Materials Reviews, 2016, 61(3), 183.
40 Toda-Caraballo I. Scripta Materialia, 2017, 127, 113.
41 Agustianingrum M P, Ondicho I, Jodi D E, et al. Materials Science and Engineering, 2019, 759(24), 633.
42 Ke G Y. Simple solid solution in AlxCoyCrzCu0.5FevNiw high-entropy alloys. Master’s Thesis, National Tsing Hua University, China, 2005(in Chinese).
柯冠宇. 高熵合金AlxCoyCrzCu0.5FevNiw中的简单固溶体. 硕士学位论文, 国立清华大学, 2005.
43 Coury F G, Kaufman M, Clarke A J. Acta Materialia, 2019, 175, 66.
44 Varvenne C, Luque A, Curtin W A. Acta Materialia, 2016, 118, 164.
45 Yin B, Curtin W A. Npj Computational Materials, 2019, 5, 14.
46 Varvenne C, Curtin W A. Scripta Materialia, 2018, 142, 92.
47 Varvenne C, Curtin W A. Scripta Materialia, 2017, 138, 92.
48 Wen D, Chang C H, Matsunaga S, et al. Materialia, 2020, 9, 100539.
49 Maresca F, Curtin W A. Acta Materialia, 2020, 182, 235.
50 Chen H, Kauffmann A, Laube S, et al. Metallurgical and Materials Transactions A, 2017, 49, 772.
51 Coury F G, Clarke K D, Kiminami C S, et al. Scientific Reports, 2018, 8(1), 8600.
52 Moon J, Jang M J, Bae J W, et al. Intermetallics, 2018, 98, 89.
53 Wu Z, Bei H, Pharr G M, et al. Acta Materialia, 2014, 81, 428.
54 Okamoto N L, Yuge K, Tanaka K, et al. AIP Advances, 2016, 6(12), 125008.
55 Sohn S S, Alisson K D S, Ikeda Y, et al. Advanced Materials, 2018, 31(8), 1807142.
56 Coury F G, Butler T, Chaput K, et al. Materials & Design, 2018, 155, 244.
57 Menou E, Toda-Caraballo I, Pineau C, et al. Materials & Design,2018, 143, 185.
58 Menou E, Tancret F, Toda-Caraballo I, et al. Scripta Materialia, 2018, 156, 120.
59 Bracq G, Laurent-Brocq M, Varvenne C, et al. Acta Materialia, 2019, 177, 266.
60 Coury F G, Wilson P, Clarke K D, et al. Acta Materialia,2019, 167, 1.
61 Wang S P, Xu J. Intermetallics, 2018, 95, 59.
62 Yin B L, Maresca F, Curtin W A, et al. Acta Materialia, 2020, 188, 486.
63 Kittel C. Introduction to the Solid State Physics, John Wiley & Sons, USA, 2004.
64 Hua G,Li D. Physica Status Solidi B, 2012, 249(8), 1.
65 Liu Z R, Li D Y. Acta Materialia, 2015, 89, 225.
66 Tiwari G P, Ramanujan R V. Journal of Materials Science, 2001, 36, 271.
67 Hyun S O, Sang J K, Khorgolkhuu O, et al. Nature Communications, 2019, 10, 2090.
68 Wang W Y, Shang S L, Wang Y. Npj Computational Materials, 2017, 3, 23.
69 Lu H, Li L, Huang X, et al. Journal of Alloys and Compounds, 2018, 737, 323.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[4] 黄同瑊, 晁代义, 于芳, 张芮源, 周艳艳, 赵晓红, 徐志远. 保温时间对2024包铝薄板元素扩展及力学性能的影响[J]. 材料导报, 2021, 35(Z1): 421-424.
[5] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[6] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[7] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[8] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[9] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[10] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[11] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[12] 王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
[13] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[14] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[15] 米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生. 机器学习技术在材料科学领域中的应用进展[J]. 材料导报, 2021, 35(15): 15115-15124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed