Research Progress on Solid Solution Strengthening of High Entropy Alloys
WEN Cheng1,2, MO Wanwan1, TIAN Yuwan1,2, WANG Gui3, HU Jiezhen3
1 School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China 2 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China 3 Guangdong Provincial Ocean Equipment and Manufacturing Engineering Technology Research Center, Zhanjiang 524088, China
Abstract: There is no identification of solute and solvent in high entropy alloys, compared to traditional alloy materials. The lattice distortion and size mismatch caused by the special composition of high entropy alloys make it possess significant solid solution strengthening effect, and hence lead to excellent mechanical strength. However, classical strengthening theories based on diluted solute assumption cannot be used to describe the strengthening effect of high entropy alloys, so it is hard to accurately predict the strength of high entropy alloys, which hinders the rational design and application research of such alloys. In recent years, some researchers explore the solid solution strengthening origin and try to develop reliable strengthening models to realize the high-throughput prediction of strength/hardness, and ultimately guide the rapid composition design for performance requirement, to promote the scientific research and engineering application of high entropy alloys. In this review, we summarized the research progress on solid solution strengthening of high entropy alloys, introduced three typical strengthening models at present, compared and analyzed the model construction, prediction effect, remaining problems and the specific application in the design of high entropy alloys. Finally, we prospected the exploration of solid solution strengthening mechanism of high entropy alloys, the development and application of strengthening model.
作者简介: 文成,2014年1月毕业于北京科技大学,获得材料科学与工程硕士学位,现为广东海洋大学讲师。目前主要研究领域为机器学习指导下的理性材料设计、高熵合金的强化机制及腐蚀行为。近五年发表论文10余篇,包括Acta Materialia、Marine Structures、Journal of Applied Electrochemistry、npj Computational Materials等,授权专利3项。 田玉琬,博士,广东海洋大学讲师。主要研究方向为海工装备及材料的腐蚀与防护、高强耐蚀金属材料的研发等。近五年发表SCI论文10余篇,包括Cement and Concrete Composites、Materials Letters、Construction and Building Materials等,授权专利3项。
引用本文:
文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
WEN Cheng, MO Wanwan, TIAN Yuwan, WANG Gui, HU Jiezhen. Research Progress on Solid Solution Strengthening of High Entropy Alloys. Materials Reports, 2021, 35(17): 17081-17089.
1 Huang S C, Zhang Y S, Zhang X L, et al. Computational Materials Science, 2017, 127, 60. 2 Abdelaziz M H, Paradis M, Samuel A, et al. Advances in Materials Science and Engineering, 2017, 2, 1. 3 Schinhammer M, Hanzi A C, Loffler J F, et al. Acta Biomaterialia, 2010, 6, 1705. 4 Long H, Mao S, Liu Y, et al. Journal of Alloys and Compound, 2018, 743, 203. 5 Hayama A O F, Andrade P N, Cremasco A, et al. Materials & Design, 2014, 55, 1006. 6 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299. 7 Yeh J W. Hua Kang Journal of Engineering, 2011(27), 1(in Chinese). 叶均蔚. 华冈工程学报, 2011(27), 1. 8 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18, 1758. 9 Yoshida S, Bhattacharjee T, Bai Y, et al. Script Materials, 2017,134,33. 10 Yong Z, Zuo T T, Zhi T, et al. Progress in Materials Science,2014,61,1. 11 Miracle D B, Senkov O N. Acta Materialia, 2016, 122, 448. 12 Guo S. Materials Science and Technology, 2015, 31(10), 1223. 13 Ma S G, Zhang S F, Qiao J W, et al. Intermetallics, 2014, 54, 104. 14 Edalati P, Floriano R, Tang Y, et al. Materials Science and Engineering C, 2020, 112, 110908. 15 Schuh B, Mendez-Martin F, Vlker B, et al. Acta Materialia, 2015, 96, 258. 16 Qiu Y, Gibson M A, Fraser H L, et al. Materials Science and Technology, 2015, 31(10), 1235. 17 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153. 18 Miracle D B, Senkov O N. Acta Materialia, 2016, 122, 448. 19 Shen L H, Yang X F. Materials Reports A: Review Papers,2020,34(6), 11171(in Chinese). 沈利华, 杨晓芳. 材料导报:综述篇, 2020, 34(6), 11171. 20 Yeh J W, Chen S K, Gan J Y, et al. Metallurgical and Materials Transa-ctions A, 2004, 35, 2533. 21 Li C, Xue Y, Hua M, et al. Materials & Design, 2016, 90, 601. 22 Mishra R S, Kumar N, Komarasamy M. Materials Science and Technology, 2015, 31, 1259. 23 Song H Q, Tian F Y, Hu Q M, et al. Physical Review Materials, 2017, 1, 023404. 24 He Q F, Yang Y. Frontiers in Materials, 2018, 5, 42. 25 Fleischer R L. Scripta Metallurgica, 1987, 21(8), 1083. 26 Labusch R. Physica Status Solidi, 1970, 41(2), 659. 27 Gypen L A, Deruyttere A. Journal of Materials Science, 1977, 12(5), 1034. 28 Riddhagni B R. Journal of Applied Physics, 1968, 39(9), 4144. 29 Larosa C R, Shih M, Varvenne C, et al. Materials Characterization, 2019, 151, 310. 30 Walbrühl M, Linder D, Agren J, et al. Materials Science and Enginee-ring, A, 2017, 700, 301. 31 Lubarda V A. Mechanics of Materials, 2003, 35, 53. 32 Senkov O N, Scott J M, Senkova S V, et al. Journal of Alloys and Compounds, 2011, 509(20), 6043. 33 Yao H W, Qiao J W, Hawk J A, et al. Journal of Alloys and Compounds, 2016, 696, 1139. 34 Wang S P, Xu J. Intermetallics, 2018, 95, 59. 35 Wang Z P, Fang Q H, Li J, et al. Journal of Materials Science & Techno-logy, 2018, 34(2), 349. 36 Rao Z Y, Wang X, Zhu J, et al. Intermetallics, 2016, 77, 23. 37 Moreen H A, Taggart R, Polonis D H. Metallurgical Transactions, 1971, 2(1), 265. 38 Toda-Caraballo I. Acta Materialia, 2015, 85, 14. 39 Pickering E, Jones N G. International Materials Reviews, 2016, 61(3), 183. 40 Toda-Caraballo I. Scripta Materialia, 2017, 127, 113. 41 Agustianingrum M P, Ondicho I, Jodi D E, et al. Materials Science and Engineering, 2019, 759(24), 633. 42 Ke G Y. Simple solid solution in AlxCoyCrzCu0.5FevNiw high-entropy alloys. Master’s Thesis, National Tsing Hua University, China, 2005(in Chinese). 柯冠宇. 高熵合金AlxCoyCrzCu0.5FevNiw中的简单固溶体. 硕士学位论文, 国立清华大学, 2005. 43 Coury F G, Kaufman M, Clarke A J. Acta Materialia, 2019, 175, 66. 44 Varvenne C, Luque A, Curtin W A. Acta Materialia, 2016, 118, 164. 45 Yin B, Curtin W A. Npj Computational Materials, 2019, 5, 14. 46 Varvenne C, Curtin W A. Scripta Materialia, 2018, 142, 92. 47 Varvenne C, Curtin W A. Scripta Materialia, 2017, 138, 92. 48 Wen D, Chang C H, Matsunaga S, et al. Materialia, 2020, 9, 100539. 49 Maresca F, Curtin W A. Acta Materialia, 2020, 182, 235. 50 Chen H, Kauffmann A, Laube S, et al. Metallurgical and Materials Transactions A, 2017, 49, 772. 51 Coury F G, Clarke K D, Kiminami C S, et al. Scientific Reports, 2018, 8(1), 8600. 52 Moon J, Jang M J, Bae J W, et al. Intermetallics, 2018, 98, 89. 53 Wu Z, Bei H, Pharr G M, et al. Acta Materialia, 2014, 81, 428. 54 Okamoto N L, Yuge K, Tanaka K, et al. AIP Advances, 2016, 6(12), 125008. 55 Sohn S S, Alisson K D S, Ikeda Y, et al. Advanced Materials, 2018, 31(8), 1807142. 56 Coury F G, Butler T, Chaput K, et al. Materials & Design, 2018, 155, 244. 57 Menou E, Toda-Caraballo I, Pineau C, et al. Materials & Design,2018, 143, 185. 58 Menou E, Tancret F, Toda-Caraballo I, et al. Scripta Materialia, 2018, 156, 120. 59 Bracq G, Laurent-Brocq M, Varvenne C, et al. Acta Materialia, 2019, 177, 266. 60 Coury F G, Wilson P, Clarke K D, et al. Acta Materialia,2019, 167, 1. 61 Wang S P, Xu J. Intermetallics, 2018, 95, 59. 62 Yin B L, Maresca F, Curtin W A, et al. Acta Materialia, 2020, 188, 486. 63 Kittel C. Introduction to the Solid State Physics, John Wiley & Sons, USA, 2004. 64 Hua G,Li D. Physica Status Solidi B, 2012, 249(8), 1. 65 Liu Z R, Li D Y. Acta Materialia, 2015, 89, 225. 66 Tiwari G P, Ramanujan R V. Journal of Materials Science, 2001, 36, 271. 67 Hyun S O, Sang J K, Khorgolkhuu O, et al. Nature Communications, 2019, 10, 2090. 68 Wang W Y, Shang S L, Wang Y. Npj Computational Materials, 2017, 3, 23. 69 Lu H, Li L, Huang X, et al. Journal of Alloys and Compounds, 2018, 737, 323.